СОВЕРШЕНСТВОВАНИЕ ОЧИСТКИ СЕРОСОДЕРЖАЩИХ УГЛЕВОДОРОДНЫХ ГАЗОВ ДЛЯ ЭКОЛОГИЧЕСКИ БЕЗОПАСНОГО ИСПОЛЬЗОВАНИЯ В СИСТЕМАХ ТЕПЛОСНАБЖЕНИЯ > Полезные советы
Тысяча полезных мелочей    

СОВЕРШЕНСТВОВАНИЕ ОЧИСТКИ СЕРОСОДЕРЖАЩИХ УГЛЕВОДОРОДНЫХ ГАЗОВ ДЛЯ ЭКОЛОГИЧЕСКИ БЕЗОПАСНОГО ИСПОЛЬЗОВАНИЯ В СИСТЕМАХ ТЕПЛОСНАБЖЕНИЯ

СОВЕРШЕНСТВОВАНИЕ ОЧИСТКИ СЕРОСОДЕРЖАЩИХ УГЛЕВОДОРОДНЫХ ГАЗОВ ДЛЯ ЭКОЛОГИЧЕСКИ БЕЗОПАСНОГО ИСПОЛЬЗОВАНИЯ В СИСТЕМАХ ТЕПЛОСНАБЖЕНИЯ

Диденко В.Г. Котов А.В. Салех И.Ш. Статья в формате PDF 131 KB

Растущий спрос на природный газ как наиболее эффективный вид топлива для нужд теплоснабжения и теплоэнергетики делает актуальной задачу повышения его товарного производства. В тоже время, ужесточение требований к составу выбросов теплогенерирующих источников ограничивает возможности расширения сырьевой базы углеводородных газов за счет сероводородосодержащих газовых месторождений, попутных и хвостовых газов нефтедобычи и нефтепереработки. Проблему усложняет сложившаяся пpaктика экологически опасного сжигания таких газов на факелах.

Одновременно, малосернистые (товарные) горючие газы часто без предварительной очистки используются в установках теплоснабжения и теплоэнергетики с нейтрализацией продуктов сгорания традиционными методами (в основном хемосорбциоными) и последующим дожиганием их кислых составляющих. Это приводит к существенному загрязнению окружающей среды.

Для очистки серосодержащих углеводородных газов в мировой пpaктике применяется более 20 способов. Анализ технологических особенностей их реализации показывает, что известные способы экономически малоэффективны для очистки попутных и малосернистых газов. Тем самым, необходимо изыскание и разработка новых технологий их очистки от сернистых примесей.

В настоящее время предпочтение отдается окислительным способам, позволяющим одновременно проводить очистку газа и конверсию сероводорода в элементарную серу. При этом в качестве реагентов окислителей применяются соединения переходных металлов (V, As, Cr, Fe). Наибольшее применение находит трехвалентный гидроксид железа, поскольку является самым доступных сорбентом. Исследование нейтрализующих свойств этих сорбентов к сероводороду показали, что эффективность процессов его окисления дисперсным гидроксидом железа повышается в кислотной среде с ростом кислотности раствора, т.е. отвечает области существование в водных растворах молекулярного сероводорода. Для гидроксида железа, наиболее высокая эффективность к сероводороду достигается при нейтральных слабощелочных значениях рН среды (от 6 до 9 ед), т.е. в области существования в водных растворах гидросульфид-ионов.

Исследование возможности повышения нейтрализующей эффективности дисперсного гидроксида железа к сероводороду, в зависимости от способов получения показали, что наиболее активная его форма может быть получена при взаимодействии разбавленных растворов FeCl с суспензией гидроксида магния Mg(OH).

В мировой пpaктике для улучшения нейтрализующей и реакционной способностей таких сорбентов в качестве катализаторов применяются в основном хлориды щелочных и щелочноземельных металлов (MgCl, ZnCl). Исследования их каталитических свойств и катализатора на основе природного Волгоградского бишофита показали, что последний на 10-15% эффективнее известных катализаторов. Еще более важным результатом является выявленный рост каталитической эффективности бишофита с увеличением концентрации его соли. Это дает возможность получения поглотительных растворов с заданными техническими хаpaктеристиками.

На основе изучения физико-химических свойств бишофита и его водных растворов разработан новый окислительный состав для нейтрализации сероводорода, который содержит одновременно две активные формы соединения трехвалентного железа в среде раствора катализатора на основе бишофита. Его лабораторные и стендовые испытания показали высокую эффективность нейтрализации НS в температурном интервале от -100С до +500С. Регенерация отработанного раствора реализуется окислением восстанавливаемых сорбентов кислородом воздуха в условиях, повышением эффективности процесса с ростом положительных температур и достигает максимальной величины в интервале температур 20-600С. Это значительно расширяет область температур применения таких растворов. Это является новым результатом в мировой пpaктике.

Результаты проведенных исследования позволили разработать технологические основы способа очистки углеводородных газов от сероводорода, с его реализацией в форме раздельных стадий:

- нейтрализации сероводорода сорбентами путем перемешивания поглотительного раствора серосодержащим потоком очищаемого газа в режиме образования пенодинамической газожидкостной системы;

- регенерации отработанных сорбентов кислородом путем идентичного перемешивания отработавшего раствора потоком воздухом.

На этой основе построена технологическая схема сероочистки, унифицированная для создания различных по мощности блочно-модульных установок. Промысловые испытания показали, что в области температур от минус 10 дл плюс 400С эффективность процесса очистки нефтяного газа от сероводорода превышает 99%, а его остаточное содержание соответствует нормативным требованиям.



НЕФТЕЕМКОСТЬ СОРБЕНТА ИЗ УГЛИСТОЙ МАССЫ ОТ СОДЕРЖАНИЯ В НЕФТЕШЛАМЕ ВОДЫ И НЕФТИ

НЕФТЕЕМКОСТЬ СОРБЕНТА ИЗ УГЛИСТОЙ МАССЫ ОТ СОДЕРЖАНИЯ В НЕФТЕШЛАМЕ ВОДЫ И НЕФТИ Приведен способ очистки водной поверхности от нефтяных загрязнений, который может быть использован для очистки водных объектов от пленки аварийно-разлитой и другой плавающей нефти. Разработаны математические модели процесса сорбции древесных отходов в программной среде Curve Expert 1.3. ...

11 04 2024 0:39:35

НЕЗАВИТИН АНАТОЛИЙ ГРИГОРЬЕВИЧ

НЕЗАВИТИН АНАТОЛИЙ ГРИГОРЬЕВИЧ Статья в формате PDF 359 KB...

05 04 2024 8:31:10

ПРИМЕНЕНИЕ МЕТОДА ДЭВИСА ПРИ ОПРЕДЕЛЕНИИ КОНСТАНТ ДИССОЦИАЦИИ ДИЭЛЕКТРОЛИТОВ

ПРИМЕНЕНИЕ МЕТОДА ДЭВИСА ПРИ ОПРЕДЕЛЕНИИ КОНСТАНТ ДИССОЦИАЦИИ ДИЭЛЕКТРОЛИТОВ В работе обосновано применение метода Дэвиса для оценки коэффициентов активности ионов, образующихся в кислотно-основной системе, при определении термодинамических констант диссоциации ароматических кислот в среде диметилформамида. ...

28 03 2024 8:17:18

ИНФРАСТУКТУРА КАК ОБЪЕКТ ЭКОНОМИЧЕСКОЙ ТЕОРИИ

ИНФРАСТУКТУРА КАК ОБЪЕКТ ЭКОНОМИЧЕСКОЙ ТЕОРИИ Статья в формате PDF 268 KB...

23 03 2024 12:28:31

СКОРОСТНОЕ ФОРМООБРАЗОВАНИЕ МЕТАЛЛА

СКОРОСТНОЕ ФОРМООБРАЗОВАНИЕ МЕТАЛЛА Статья в формате PDF 138 KB...

20 03 2024 17:46:44

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::