ПАРАМЕТР АСИММЕТРИИ ЗОНТООБРАЗНОГО ТЕЛА > Полезные советы
Тысяча полезных мелочей    

ПАРАМЕТР АСИММЕТРИИ ЗОНТООБРАЗНОГО ТЕЛА

ПАРАМЕТР АСИММЕТРИИ ЗОНТООБРАЗНОГО ТЕЛА

Герасимов С.А. Измерены коэффициенты аэродинамического сопротивления и параметры асимметрии тонких полых конусообразных тел. Статья в формате PDF 185 KB

Настоящая работа имеет самое прямое отношение к проблеме создания так называемого вибрационного летательного аппарата. Это устройство представляет собой несимметричный корпус W, относительно которого совершает незатухающие, не обязательно гармонические, рабочее тело B (рисунок 1) [1,5].

Рисунок 1. Схема вибрационного летательного аппарата.

Качественно, если масса корпуса много меньше массы рабочего тела, подъемную силу F такого устройства можно оценить по формуле

,    (1)

где a и T - амплитуда и период колебаний, соответственно, S -площадь сечения корпуса, r - плотность среды, cx - коэффициент аэродинамического сопротивления, соответствующий движению корпуса вниз, d - параметр асимметрии корпуса, представляющий собой, по существу, отношение величины cx к коэффициенту сопротивления, соответствующего движению корпуса вверх. Совершенно очевидно, что для увеличения подъемной силы необходим выбор параметров корпуса с максимально возможными значениями коэффициента сопротивления и параметра асимметрии. Это же требование вытекает и из строгого расчета [2]. Считается, что даже для полусферы параметр асимметрии составляет величину не менее 5 [6]. Это, впрочем, относится только к достаточно большим скоростям движения зонтообразного тела относительно среды и к статическому режиму, когда скорость воздуха относительно тела во время измерений остается неизменной. Первые серьезные испытания вибрационного способа полета оказались неудачными [3]. Одной из причин этого, как выяснилось, является низкое значение параметров асимметрии зонтообразных тел. Поэтому, измерение параметров асимметрии зонтообразных тел достаточно актуально для разработки и прогнозирования параметров вибрационного летательного аппарата.

Измерения силы сопротивления в аэродинамической трубе сложны, дорогостоящи и неоднозначны [4]. А для данной задачи вообще достаточно воспользоваться методом, основанным на точном измерении времени падения тела в среде с сопротивлением.

На рисунке 2 показаны результаты измерения времени падения t тонких лавсановых конусов с высоты h=0,67м для трех значений отношения площади боковой поверхности конуса SC к площади основания S.

Рисунок 2. Зависимости времени падения конусообразных тел от отношения площади сечения к массе при различных площадях боковой поверхности SC. Точки - экспериментальные результаты, кривые - решение уравнения (2).

Точность измерения интервала времени составила величину не хуже 0,02с. Такой способ представления экспериментальных результатов выбран не случайно. Дело в том, что при квадратичном сопротивлении зависимость времени падения от массы тела m и площади сечения S определяется решением уравнения

, (2)

где r - плотность воздуха, g -ускорение свободного падения. Отсюда следует, что при фиксированном значении высоты время падения должно зависеть только от отношения S/m. В измерениях участвовали тонкие лавсановые конусы, падающие как острием вверх, так и вниз. Представленные на рисунке 2 результаты соответствуют изменениям площадей сечения тел более чем в 5 раз, масс - в 10 раз. При этом минимальное значение площади равнялось 0,02м2, а минимальная масса падающего тела - 0,02кг.

Следует обратить внимание на следующее обстоятельство. Падение всех конусов острием вниз происходит примерно с одним и тем же коэффициентом сопротивления. Его среднее значение - сx=2,7±0,3. Следующий факт: это значение незначительно отличается от коэффициентов сопротивления, соответствующих падению конусов острием вниз. Другими словами, даже при двукратном превышении площади боковой поверхности над площадью основания конуса параметр асимметрии составляет величину всего лишь 1,75. Коэффициенты сопротивления определялись из условия наилучшего соответствия зависимости t(S/m) полученным экспериментальным данным. Зависимость параметра асимметрии d от отношения площадей показана на рисунке 3.

Рисунок 3. Параметры асимметрии конусообразных тел. Точки - экспериментальные результаты, сплошная кривая - зависимость (3).

Приближенно параметры асимметрии могут быть описаны выражением

,      (3)

где b=0,65.

Это далеко не все, что можно извлечь из экспериментальных значений коэффициентов аэродинамического сопротивления. Например, можно определить оптимальный размер конусообразного корпуса вибрационного летательного аппарата. Действительно, подстановка полученного выражения (3) в (1) дает

и позволяет определить оптимальное отношение S/SС. Здесь f=2T2F/p2a2cxrSC и представляет собой приведенную подъемную силу вибрационного летательного аппарата. Фиксированное значение площади боковой поверхности корпуса означает фиксированное значение массы вибрационного летательного аппарата. Поэтому имеет смысл рассмотреть зависимость приведенной подъемной силы от отношения площадей S/SС. Такая зависимость показана на рисунке 4 и демонстрирует, что приведенная подъемная сила максимальна при S/SС ≈ 2/3. При этом параметр асимметрии составляет d ≈1,5, причем f ≈ 0,2.

Рисунок 4. Зависимость приведенной подъемной силы f от отношения площади сечения к площади боковой поверхности конусообразного корпуса вибрационного летательного аппарата.

Например, при a=0,1м, T=0,1c и S=1м2 подъемная сила должна в лучшем случае составлять величину F≈5,2Н. Разумеется, это -завышенное значение. Однако теперь становится понятным, расчет критического режима вибрационного полета для больших параметров асимметрии [2] лишен смысла. Едва ли параметр асимметрии может составить величину больше 3. Попытки увеличить это число ведут к неоправданному утяжелению системы.

СПИСОК ЛИТЕРАТУРЫ

  1. Герасимов С.А. //Прикл. мех. и техн. физ. 2003. Т. 44. № 6. С. 44-48.
  2. Герасимов С.А., Удалова Е.С. //Техника и технология. 2005. № 1. С. 17-20.
  3. Герасимов С.А. //Естеств. и техн. науки. 2005. № 6. С. 128-132.
  4. Горлин С.М., Слезингер И.И. Аэромеханические измерения. - М.: Наука, 1964. - 720 с.
  5. Нагаев Р.Ф., Тамм Е.А. //Машиноведение. 1980. № 4. С. 3-8.
  6. Стрелков С.П. Механика. - М. Наука, 1975. - 560 с.


Кузнецов Борис Леонидович

Кузнецов Борис Леонидович Статья в формате PDF 84 KB...

23 04 2024 0:14:42

ВЛИЯНИЕ НОВОГО СУТОЧНОГО РИТМА НА СООТНОШЕНИЕ ОТДЕЛЬНЫХ СОСТАВНЫХ ЧАСТЕЙ ЯЙЦА ЯПОНСКИХ ПЕРЕПЕЛОК В НАЧАЛЕ ЯЙЦЕКЛАДКИ

ВЛИЯНИЕ НОВОГО СУТОЧНОГО РИТМА НА СООТНОШЕНИЕ ОТДЕЛЬНЫХ СОСТАВНЫХ ЧАСТЕЙ ЯЙЦА ЯПОНСКИХ ПЕРЕПЕЛОК В НАЧАЛЕ ЯЙЦЕКЛАДКИ В работе впервые приведены данные по соотношению отдельных составных частей яиц японских перепелок, выращенных в новых суточных ритмах. В начале яйцекладки средний масса желтка у опытных птиц больше на 1,0 %, масса белка у контрольных больше на 1,04 % от общего веса яйца. Масса скорлупы у обеих групп в начале яйцекладки одинакова .У опытных птиц между весом яйца и весовыми долями желтка и белка установлена прямая коррелятивная связь. Между массами яйца и желтка –слабая (r = +0,335), между массами яйца и белка – тесная(r = +0,999), между массами желтка и белка(r = +0,549) – средняя корреляция.). Отношение белка к желтку у контрольных яиц больше на 0,08 %. ...

22 04 2024 2:47:27

Природа человека в контексте сверхтехнологий

Природа человека в контексте сверхтехнологий Статья в формате PDF 255 KB...

21 04 2024 6:29:57

ПРОДОЛЖИТЕЛЬНОЕ ПРЕБЫВАНИЕ В УСЛОВИЯХ НЕВЕСОМОСТИ И ЕЕ ВЛИЯНИЕ НА МЕХАНИЧЕСКИЕ СВОЙСТВА ТРЕХГЛАВОЙ МЫШЦЫ ГОЛЕНИ У ЧЕЛОВЕКА: ЭЛЕКТРОМЕХАНИЧЕСКАЯ ЗАДЕРЖКА И МЫШЕЧНО-СУХОЖИЛЬНАЯ ЖЕСТКОСТЬ

ПРОДОЛЖИТЕЛЬНОЕ ПРЕБЫВАНИЕ В УСЛОВИЯХ НЕВЕСОМОСТИ И ЕЕ ВЛИЯНИЕ НА МЕХАНИЧЕСКИЕ СВОЙСТВА ТРЕХГЛАВОЙ МЫШЦЫ ГОЛЕНИ У ЧЕЛОВЕКА: ЭЛЕКТРОМЕХАНИЧЕСКАЯ ЗАДЕРЖКА И МЫШЕЧНО-СУХОЖИЛЬНАЯ ЖЕСТКОСТЬ Исследовали влияние продолжительного пребывания в условиях невесомости на механические свойства и электромеханическую задержку (ЭМЗ) трехглавой мышцы голени (ТМГ) у 7 космонавтов до полета и на 3-5 день после возвращения на Землю. Механические свойства ТМГ оценивали по показателям максимальной произвольной силы (МПС), максимальной силы (Ро; частота 150 имп/с), силы одиночного сокращения (Рос), времени одиночного сокращения (ВОС), времени полурасслабления (1/2 ПР), времени развития напряжения до уровня 25, 50, 75 и 90% от максимума. Рассчитывали силовой дефицит (Рд) и тетанический индекс (ТИ). ЭМЗ регистрировали во время произвольного и непроизвольного сокращения ТМГ. В ответ на световой сигнал космонавт выполнял произвольное подошвенное сгибание при условии «сократить как можно быстро и сильно». Определяли общее время реакции (ОВР), премоторное время (ПМВ) и моторное время (МТ) или иначе ЭМЗ. В ответ на супрамаксимальный одиночный электрический импульс, приложенный к n. tibialis, определяли латентный период между М-ответом и началом развития Рос. После полета Рос, МПС и Ро уменьшились на 14,8; 41,7 и 25.6%, соответственно. Величина Рд и ТИ увеличилась на 49,7 и 46,7%, соответственно. ВОС увеличилось на 7,7%, а время 1/2 ПР уменьшилось – на 20,6%. Время развития произвольного изометрического сокращения значительно увеличилось, тогда как электрически вызванное сокращение не обнаружило существенных различий. ЭМЗ произвольного сокращения увеличилась на 34,1%, а ПМВ и ОВР уменьшились на 19,0 и 14,1%, соответственно. ЭМЗ электрически вызванного сокращения существенно не изменилось. Таким образом, механические изменения предполагают, что невесомость изменяет не только периферические процессы, связанные с сокращениями, но изменяет также и центрально-нервную комaнду. ЭМЗ при вызванном одиночном сокращении простой и быстрый метод оценки изменения жесткости мышцы. Более того, ЭМЗ при вызванном одиночном сокращении мышцы может служить показателем функционального состояния нервно-мышечного аппарата, а соотношение ЭМЗ при произвольном и вызванном сокращениях показателем функционального состояния центральной нервной системы. ...

17 04 2024 7:18:54

РОЛЬ ПОЧВЕННЫХ ВОДОРОСЛЕЙ В АНТРОПОГЕННЫХ ЭКОСИСТЕМАХ

РОЛЬ ПОЧВЕННЫХ ВОДОРОСЛЕЙ В АНТРОПОГЕННЫХ ЭКОСИСТЕМАХ Рассмотрены вопросы участия почвенных водорослей в поддержании стабильности наземных экосистем в условиях антропогенного воздействия на окружающую среду. Показано, что почвенные водоросли обладают высокой устойчивостью к нефтяному и радиоактивному загрязнению, наличию в среде поверхностно-активных веществ. Они первыми из автотрофных организмов поселяются на токсичных субстратах, участвуют в самозарастании промышленных отвалов. ...

06 04 2024 10:41:21

К СТРАТЕГИИ ОБРАЗОВАНИЯ XXI ВЕКА

К СТРАТЕГИИ ОБРАЗОВАНИЯ XXI ВЕКА Статья в формате PDF 154 KB...

01 04 2024 16:18:19

РОЛЬ ЦИТОКИНОВ В ПАТОГЕНЕЗЕ ЗАБОЛЕВАНИЙ

РОЛЬ ЦИТОКИНОВ В ПАТОГЕНЕЗЕ ЗАБОЛЕВАНИЙ Статья в формате PDF 122 KB...

31 03 2024 8:41:16

К ВОПРОСУ ОБУЧЕНИЯ БАНКОВСКОГО ПЕРСОНАЛА

К ВОПРОСУ ОБУЧЕНИЯ БАНКОВСКОГО ПЕРСОНАЛА Статья в формате PDF 121 KB...

28 03 2024 15:17:57

Компьютерные технологии в медицине

Компьютерные технологии в медицине Статья в формате PDF 111 KB...

24 03 2024 13:35:51

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::