О МЕТОДАХ, УЛУЧШАЮЩИХ УСТОЙЧИВОСТЬ И СТРУКТУРУ “ЛЕГКИХ” ПЕНОБЕТОННЫХ СМЕСЕЙ > Полезные советы
Тысяча полезных мелочей    

О МЕТОДАХ, УЛУЧШАЮЩИХ УСТОЙЧИВОСТЬ И СТРУКТУРУ “ЛЕГКИХ” ПЕНОБЕТОННЫХ СМЕСЕЙ

О МЕТОДАХ, УЛУЧШАЮЩИХ УСТОЙЧИВОСТЬ И СТРУКТУРУ “ЛЕГКИХ” ПЕНОБЕТОННЫХ СМЕСЕЙ

Сидоренко Ю.В. Стрелкин Е.В. Статья в формате PDF 122 KB

Как было отмечено ранее [1-4], в индукционном периоде подготовки "легкой" пенобетонной смеси она представляет собой 3-х фазную гетерогенную систему взаимодействующих континуумов - газового, жидкого и твердого. При плотности менее 500 кг/м3 в процессе подготовки смеси система может терять устойчивость, т.е. расслаиваться на отдельные фазы. Причина заключается в наличии свободной жидкости (воды), которая выполняет важную роль в технологическом процессе. Под действием гравитационного синерезиса [5] свободная вода стекает по стохастической системе капилляров. Чем больше стекание, тем система быстрее расслаивается.

В процессе движения свободной воды перемычки между газовыми порами теряют прочность, и происходит объединение пузырей, как на принципах коалесценции, так и коволюции. Имеющиеся мелкие твердые частицы не в состоянии связать всю жидкую фазу, т.к. количество пустот между ними будет ограничено. При уходе воды из перемычки за счет явлений экстpaкции микрокластеры начнут уплотняться и ослабллять воздушные поры.

В технологии легких пенобетонов предложено немало методов стабилизации структуры - применение пластификаторов, введение армирующих элементов, предварительная гидратация цемента; наиболее эффективным и простым способом является применение микронаполнителей и уменьшение дисперсности твердой фазы, что приводит к повышению упруго-вязких свойств межпоровой перегородки [6, 7, 8 и др.].

Потерю устойчивости легкого пенобетона можно рассматривать на микроуровне, т.е. применительно к отдельной межпоровой перемычке, так и на макроуровне - по отношению к выделенному единичному объему. Решение второй задачи позволило бы, на наш взгляд, определить количественную теоретическую скорость расслоения пенобетонной смеси и выявить влияние на нее различных факторов.

Наш анализ влияния гидродинамических факторов на процесс устойчивости смеси  (в индукционном периоде) указывает на малое количество работ в этой области. Трудность моделирования 3-х фазных систем связана с оценкой межфазных взаимодействий по границам фаз. Учитывая это, мы предлагаем рассматривать 2-х фазную модель, состоящую из твердожидкостной несущей фазы и газотвердожидкостной фазы. Действительно, при формировании структуры легкого пенобетона газовая фаза является тем каркасом, на котором концентрируется твердая фаза (явление "бронирования"). Твердая фаза, кроме того, удерживается в области газовой поры связанной водой. Так образуется комбинированный кластер из газовой поры (пузыря), твердых частиц и связанной воды. Подобные кластеры и образуют пористую систему, по каналам Плато которой и будет стекать свободная жидкость на поддон формы.

Присоединение твердых частиц к кластеру будет определяться балансом Ван-дер-ваальсовой, электростатической, расклинивающей составляющими межчастичного взаимодействия, кинетической энергией присоединенной частицы. При значительной кинетической энергии частица может разрушить кластер или под действием свободной воды покинуть его зону. Частицы, не вошедшие в такие кластеры, будут утолщать перемычку, т.е. тем самым способствовать увеличению плотности пенобетона или кольматировать поры. Кстати, правомерность перехода к двухфазной системе находит подтверждение, например,  в работах В.Н. Феклистова [9] по оценке формирования пенобетонной структуры различной плотности.

Предложенная схема позволяет применить традиционный подход к разрушению пены - движение фронтов по жидкой и газовой фазам, и сформировать математическую модель процесса для изотермических условий.

Как известно, для повышения устойчивости сложной системы требуется комплекс управляющих воздействий [10]. Отметим, что процессы, происходящие в подобных системах, теоретически изучаются на локальном уровне,  по отношению к отдельному капилляру, пленке, пузырю и т.п. Между тем, необходимо рассматривать такую систему как целостную структуру и формировать ее устойчивость, исходя из принципов синергетики. Применение синергетического подхода к пеноминеральным системам ("легкого" пенобетона, в частности) пpaктически не освещалось в технической литературе.

По нашему мнению, синерезис жидкости - это синергетический процесс, связанный с  ее переходом через систему разветвляющихся каналов. При нарушении гидростатического равновесия в отдельном канале он становится заполненным жидкостью, и своей гравитационной составляющей приводит к заполнению и соседний канал. Постепенно формируется бесконечный кластер, и при его окончательном заполнении свободная вода начинает стекать на дно формы. Очевидно, на время заполнения бесконечного кластера влияет высота столба пены - чем он больше, тем раньше наступает потеря неустойчивости. Таким образом, начало стока жидкости - это точка перколяции, спонтанный процесс. С увеличением времени мощность перколяционного кластера становится больше, то есть образуются новые параллельные линии стока, и процесс синерезиса ускоряется. Истечение свободной жидкости по бесконечному кластеру приводит к утонению перемычек и образованию фронта разрушения газовых пузырей. Пpaктически необходимо стремиться к тому, чтобы величина hc была больше по времени (т.е. столб пены устойчив). Свойства пен и их хаpaктеристики необходимо вводить, как технологические параметры, в инженерные расчеты производства "легких" пенобетонных изделий.

СПИСОК ЛИТЕРАТУРЫ:

  1. Сидоренко Ю.В. О подходах к задаче математического моделирования процессов структурообразования пенобетонов. // Моделирование. Теория, методы и средства: Материалы 5-й Международной научно-пpaктической конференции.- Новочеркасск: Изд-во ЮРГТУ (НПИ), 2005. - Ч.1.- С. 33-39.
  2. Сидоренко Ю.В., Стрелкин Е.В. К вопросу о теоретических основах структурообразования пенобетонов с учетом влияния гидродинамических и поверхностных процессов. // Матерiали II Мiжнародноi науково-пpaктичноi конференцii "Науковий потенцiал свiту-2005". Том 10.- Днiпропетровьск: Наука i освiта. - Украiна. - 2005.- С. 21 - 26.
  3. Коренькова С.Ф., Сидоренко Ю.В. Возможности моделирования поризованных систем // Актуальные проблемы в строительстве и архитектуре. Образование. Наука. Пpaктика: Материалы 62-й Всероссийской научно - технической конференции. Самара. 2005. Ч.1. С. 269 - 270.
  4. Коренькова С.Ф., Сидоренко Ю.В. Моделирование процессов структурообразования пенобетонов // Успехи современного естествознания.- М.: Академия естествознания. -2005. -№ 5.- С. 51 - 52.
  5. Канн К.Б. Капиллярная гидродинамика пен. - Новосибирск: Наука, 1989.
  6. Власов В.К. Закономерности оптимизации состава бетона с дисперсными минеральными добавками. //Бетон и железобетон. -1993. -№4. -С.10-12.
  7. Гусенков С.А., Удачкин В.И., Галкин С.Д. и др. Теплоизоляционные и стеновые изделия из безавтоклавного пенобетона. // Строительные материалы. - 1999. - № 4. - С. 10-11.
  8. Красный И.М. О механизме повышения прочности бетона при введении микронаполнителей. // Бетон и железобетон. -1987. -№5. -С.10-11.
  9. Феклистов В.Н. К оценке формирования пенобетонной структуры различной плотности. // Строительные материалы. - 2002.- №10.- С.16.
  10. Сидоренко Ю.В. Строительно-технологическая производственная система как объект моделирования. // Фундаментальные исследования. - М.: Академия естествознания. -2006. - № 4. - С. 35-37.

Работа представлена на заочную электронную конференцию «Новые технологии, инновации, изобретения», 15-20 июля 2006 г.



STUDYING THE BLOOD FLOW SIGNAL USING PHOTOPLETHYSMOGRAPHY

STUDYING THE BLOOD FLOW SIGNAL USING PHOTOPLETHYSMOGRAPHY Статья в формате PDF 361 KB...

16 04 2024 4:51:28

КАЧЕСТВЕННЫЙ И КОЛИЧЕСТВЕННЫЙ СОСТАВ ИМПЛАНТАЦИОННЫХ КАЛЬЦИЙФОСФАТНЫХ МАТЕРИАЛОВ

КАЧЕСТВЕННЫЙ И КОЛИЧЕСТВЕННЫЙ СОСТАВ ИМПЛАНТАЦИОННЫХ КАЛЬЦИЙФОСФАТНЫХ МАТЕРИАЛОВ В лаборатории биохимии ФГУН «РНЦ «ВТО» им. акад. Г. А. Илизарова Росздрава» разработаны имплантационные материалы на основе кальцийфосфатных соединений, выделенных из костной ткани крупного рогатого скота. Технология получения материалов для имплантации включает в себя деминерализацию костной ткани с применением хлороводородной кислоты, осаждение из раствора кальцийфосфатных соединений, их очистку, высушивание и измельчение. Изучен качественный и количественный состав полученных материалов с применением сканирующей электронной микроскопии, инфpaкрасной спектроскопии и метода рентгеновского электронно-зондового микроанализа. Установлено, что материалы представляют собой порошкообразные смеси с включениями гранул диаметром от 100 до 2000 мкм. В состав материалов входят остеотропные элементы кальций, фосфор, магний, сера, которые однородно распределены в материале. ...

15 04 2024 23:59:41

СТРУКТУРООБРАЗОВАНИЕ В СИСТЕМАХ ЖЕЛАТИН-КАЗЕИН

СТРУКТУРООБРАЗОВАНИЕ В СИСТЕМАХ ЖЕЛАТИН-КАЗЕИН Статья в формате PDF 87 KB...

08 04 2024 20:54:32

НОВЫЙ ПОДХОД К ОЦЕНКЕ УЩЕРБА ВОДНЫМ РЕСУРСАМ

НОВЫЙ ПОДХОД К ОЦЕНКЕ УЩЕРБА ВОДНЫМ РЕСУРСАМ Статья в формате PDF 146 KB...

22 03 2024 21:44:16

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::