ОСНОВАНИЯ ГЕОМЕТРИЧЕСКОГО МОДЕЛИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ > Полезные советы
Тысяча полезных мелочей    

ОСНОВАНИЯ ГЕОМЕТРИЧЕСКОГО МОДЕЛИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

ОСНОВАНИЯ ГЕОМЕТРИЧЕСКОГО МОДЕЛИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

Вертинская Н. Д. Статья в формате PDF 429 KB Геометрическое моделирование, являясь одним из направлений математического моде-лирования, все шире используется для решения сложных задач конструирования различных объектов и процессов.

Начертательная геометрия решает прямые и обратные задачи, которые заключаются в следующем: по данной поверхности на носителе (кривой (прямой), поверхности (плоскости)) с помощью аппарата проецирования получить модели; по данной модели и аппарату проецирования сконструировать поверхность. При решении прямой задачи данная поверхность расслаивается в пучке плоскостей с собственной или несобственной осью.

Геометрическое моделирование решая обратную задачу - по данной моделям конструирует поверхности. В этом случае в качестве моделей выступают табличные данные, устанавливающие на осях системы координат определенные соотношения. При этом необходимо, чтобы в одном направлении, например, оси ординат, сохранялось взаимно однозначное соответствие, необходимое требование для конструирования единственной поверхности.

В общем виде задачу геометрического моделирования многофакторных зависимостей представляется в следующем виде: в результате экспериментальных исследований или статистических данных имеем дискретные значения параметров, зависящих от n-1 зависимых или независимых друг от друга аргументов (компонентов) c1, c2, ... , c n-1

Необходимо смоделировать зависимость и получить ее уравнение

F (t, c1, c2,..., c n-1) = 0       (1)

Геометрическая интерпретация поставленной задачи заключается в следующем:

в n мерном прострaнcтве имеем набор фиксированных  точек, на которые необходимо натянуть гиперповерхность и получит ее

уравнение. Эта моделируемая гиперповерхность должна пересекать, например, вертикальную ось данной системы координат, в одной точке, для обеспечения однозначного соответствия между значением функции и значениями аргументов c1, c2, ... , c n-1. Поэтому зависимость должна моделировать моноидальную гиперповерхность с вершиной в несобственной точке, например вертикальной оси оt [1].

Моделируемая гиперповерхность несет дискретный каркас одномерных образующих

t = f(c1i)

где i=1,2...n-1 (см. рис. 3), двумерных образующих (2-поверхностей) и другого параметра c2j.

t = φ (c 1i, c 2j)

где i=1,2....n-1;  j=1,2...n-1,трехмерных образующих (3-поверхностей) параметров c1i ,  c2 j , c3k 

t= ψ (c1i , c2j , c3k )

где i=1,2...n-1;j=1,2...n-1;k=1,2....n-1 и т.д., параметроносители 2–, 3 – поверхностей и т. д.

В литературе рассматриваются случаи конструирования поверхностей в пучке с собственной и несобственной осью, но не рассматривается вопрос моделирования и конструирования поверхностей расслаивающихся в связке плоскостей. Такой подход позволяет моделировать технологические процессы с реагирующими между собой компонентами, т. к. образованные в результате реакций новые компоненты описываются параметроносителями 2– , 3– и т. д. поверхностей. Трудности заключаются в получении уравнений процессов, где компоненты нереагируют между собой. В настоящей статье рассматривается вопрос конструирования поверхностей расслаивающихся в связке ортогональных плоскостей, для чего доказана теорема (синтетический способ вывода уравнения поверхности):

Сумма трех уравнений ортогональных сечений,  инцидентных точке данной поверхности,  дает уравнение этой поверхности.

Для доказательства возьмем, например, уравнение поверхности второго порядка в виде

Ax2 +By2 +Cz2 +2Lx+K=0,     (2)

где плоскости уОz z и xOz совпадают с двумя сопряженными диаметральными плоскостями.

Возьмем точку N(a,b,c) ∈ (2) и через нее проведем связку ортогональных плоскостей

Известно, что связка плоскостей ортогональна, когда выполняется условие

Поэтому в качестве плоскостей (3), (4) и (5) в нашем случае можно взять плоскости

x = a, (7)

y = b, (8)

z = c. (9)

Cечения связкой плоскостей  N(a,b,c) поверхности (2) будут иметь следующий вид

Aa2 +By2 +Cz2 +2La+K=0 (10)

Ax2 +Bb2 +Cz2 +2Lx+K=0 (11)

Ax2 +By2 +Cc2 +Lx+K=0 (12)

Cкладывая уравнения сечений(10)-(12) поверхности получим выражение

2(Ax2 +Bb2+Cz2+2Lx+K)+(Ax2 +By2 Cc2 +La+K)=0 (13)

в котором вторая скобка равна нулю, так как точка N(a,b,c) принадлежит конструируемой поверхности (2), что и требовалось доказать.

Приведем примеры получения уравнений поверхностей, инцидентных связке плоскостей. Возьмем в трех ортогональных плоскостях связки N(a,b,c) сечения

x = a

y = b

z = c

соответственно уравнения сечений

Складывая их получим уравнение гиперболического параболоида в канонической форме

Если в связке ортогональных плоскостей с вершиной в точке N(a,b,c) сечения

x = a

y = b

z = c

взять сечения в виде

z4 =4p(a2 +y2 ), (18)

z4 =4p(x2 +b2 ), (19)

c4 =4p(x2 +y2 ), (20)

и, сложив их получим уравнение параболоида вращения четвертого порядка,

z4 =4p2 (x2 +y2 ), (21)

полученного от вращения параболы

z2 =4px (22)

вокруг оси zO.

Диаграмма состояния трехкомпонентной системы изображается некоторой поверхностью в R3 , в уравнении которой три неизвестные служат для задания состава, а четвертая – для задания температуры. На пpaктике принято состав трехкомпонентной системы изображать равносторонним треугольником, который называется концентрационным на его сторонах откладывают значения концентраций солей, температура в этом случае присутствует опосредовано. Точки внутренней области треугольника изображают трехкомпонентную систему с той или иной концентрацией ее компонент, которые не образуют между собой химических соединений, неограниченно взаимно растворимы в жидком состоянии и не способны к полиморфным превращениям. Концентрационный треугольник затрудняет или делает невозможным моделирование состояния n-компонентной системы при n >3.

Рассмотрим некоторые вопросы вывода уравнения поверхности, моделирующей трехкомпонентную систему на конкретных примерах. Для этого в четырехмерном прострaнcтве R4 задается некоторая декартовая система координат, на одной из которых откладываем значения температур, а на других осях – концентрации С1 , C2 , C3.  В результате в четырехмерном прострaнcтве получается поверхность, моделирующая систему.

Покажем вывод уравнения поверхности ликвидуса расплава трех солей заданного сечения

[25%Li2SO4 +75%Cs2Cl]←→BaSO4 . (23)

Табл. 1

 

Концентрация компоненты С1

 

0,00

 

0,70

 

2,50

 

8,20

 

9,50

Температура плавления Тдан .,оС

 

541

 

538

 

554

 

740

 

780

По табличным данным (см. табл. 1) написать уравнение поверхности ликвидуса, вычислить координаты точки эвтектики Еэвт. (С1эвт. , С2эвт. , С 3 эвт. , Тэвт).

Для решения поставленной задачи введем обозначения:

С1 – концентрация компоненты Li 2 SO4 , %;

С2 – концентрация компоненты СsCl 2 , %;

C3 – концентрация компоненты BaSO4 , %;

Т – температура плавления, 0С.

Для вывода уравнения моделируемой поверхности, необходимо пересчитать значения концентраций компонент, чтобы они в смеси удовлетворяли требованию С1 +С2 +С3  = 100% и результаты пересчитанных табличных данных сведем в табл. 2.

 

Температура0С,дан  )

Концентрации компонентов

C,%

C,%

C,%

541

0,00

25,00

75,000

538

0,695

24,826

74,479

554

2,439

24,390

73,171

740

7,578,

23,105

69,316

780

8,676

22,831

68,493

Для вывода уравнения моделирующей поверхности получаем уравнения сечений:

Сложив уравнения (24)-(26) получим уравнение поверхности ликвидуса

Значит, точка эвтектики смеси солей вычислим из уравнения (27)

 Е эвт. (0,888;24,778;74,334;537,8).

БИБЛИОГРАФИЧЕСКИЙ СПИСОК:

  1. Вертинская Н. Д. Многомерное математическое моделирование многофакторных и многопараметрических процессов в многокомпонентных системах / Н. Д. Вертинская. – Иркутск: Изд- во ИрГТУ, 2001. – 289 с.
  2. Вертинская Н. Д. Математическое моделирование нереагирующих между собой веществ. Сб. Инженерная механика. Луцк 2008. Вып. 22, ч. 1. С. 51-56.
  3. Вертинская Н. Д. Моделирование и конструирование поверхностей, несущих каркасы кривых высших порядков. Сб. Современные проблемы геометрического моделирования. Харьков. 2007. – С. 243 - 249.
  4. Вертинская Н. Д. Обоснование метода конструирования поверхностей связкой ортогональных сечений. // Вестник Иркутского регионального отделения Академии наук высшей школы России. № 1 (4). Иркутск. 2004. – С. 115 – 119.


БАЙКАЛ — ПРИРОДНОЕ НАСЛЕДИЕ СИБИРИ

БАЙКАЛ — ПРИРОДНОЕ НАСЛЕДИЕ СИБИРИ Статья в формате PDF 387 KB...

21 04 2024 21:35:53

ОБ АКТУАЛЬНОСТИ НАУЧНОГО ИССЛЕДОВАНИЯ СОЦИАЛЬНОЙ ИНФРАСТРУКТУРЫ

ОБ АКТУАЛЬНОСТИ НАУЧНОГО ИССЛЕДОВАНИЯ СОЦИАЛЬНОЙ ИНФРАСТРУКТУРЫ В статье отмечается возрастающее значение научных исследований социальной инфраструктуры. Рассматриваются различные подходы к определению этого понятия, а также роль социальной инфраструктуры в формировании уровня жизни человека и развитии человеческого потенциала. ...

20 04 2024 2:48:47

Стертые формы острого аппендицита

Стертые формы острого аппендицита Статья в формате PDF 137 KB...

16 04 2024 0:51:29

РОЛЬ ОКИСЛИТЕЛЬНОГО СТРЕССА В ПАТОГЕНЕЗЕ ХРОНИЧЕСКОЙ ОБСТРУКТИВНОЙ БОЛЕЗНИ ЛЕГКИХ

РОЛЬ ОКИСЛИТЕЛЬНОГО СТРЕССА В ПАТОГЕНЕЗЕ ХРОНИЧЕСКОЙ ОБСТРУКТИВНОЙ БОЛЕЗНИ ЛЕГКИХ В миниобзоре приведены современные тренды изучения роли окислительного стресса в патогенезе хронической обструктивной болезни легких (ХОБЛ). Показано, что развитие окислительного стресса происходит синхронно с дисбалансом в системе протеазы/антипротеазы и взаимосвязано с нарушением обмена железа. Приведены данные, демонстрирующие нарушение регуляции антиоксидантной защиты при ХОБЛ. Показана взаимосвязь между развитием окислительного стресса и воспалением. Обсуждается гипотеза о взаимосвязи окислительного стресса, хронического воспаления и старения в механизме патогенеза ХОБЛ. ...

15 04 2024 23:44:31

МОДЕЛИРОВАНИЕ ПРОЦЕССА СТРУЙНОЙ АЭРАЦИИ ЖИДКОСТИ

МОДЕЛИРОВАНИЕ ПРОЦЕССА СТРУЙНОЙ АЭРАЦИИ ЖИДКОСТИ Статья в формате PDF 115 KB...

13 04 2024 1:31:42

ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА У БЕЛОЙ КРЫСЫ

ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА У БЕЛОЙ КРЫСЫ Статья в формате PDF 297 KB...

12 04 2024 8:27:23

ПРОФЕССИОНАЛЬНОЕ РАЗВИТИЕ ПЕРСОНАЛА

ПРОФЕССИОНАЛЬНОЕ РАЗВИТИЕ ПЕРСОНАЛА Статья в формате PDF 127 KB...

10 04 2024 5:41:56

ПРОБЛЕМЫ ЛЕЧЕНИЯ УРЕТЕРОГИДРОНЕФРОЗА У ДЕТЕЙ

ПРОБЛЕМЫ ЛЕЧЕНИЯ УРЕТЕРОГИДРОНЕФРОЗА У ДЕТЕЙ Статья в формате PDF 105 KB...

02 04 2024 10:24:50

НАЧАЛЬНЫЕ ЭТАПЫ ФОРМИРОВАНИЯ ЛЕВОГО ЯРЕМНОГО ЛИМФАТИЧЕСКОГО СТВОЛА У ПЛОДОВ ЧЕЛОВЕКА

НАЧАЛЬНЫЕ ЭТАПЫ ФОРМИРОВАНИЯ ЛЕВОГО ЯРЕМНОГО ЛИМФАТИЧЕСКОГО СТВОЛА У ПЛОДОВ ЧЕЛОВЕКА У плодов человека 10-12 нед обнаружено формирование левых яремных лимфатических стволов. Медиальный ствол спускается к грудному протоку около трахеи и пищевода. Поперечный латеральный ствол выходит из воротного синуса крупного нижнего глубокого латерального шейного лимфатического узла, расположенного на месте медиального отрога яремного лимфатического мешка, проходит позади блуждающего нерва и общей сонной артерии и впадает в начало шейной части грудного протока. ...

25 03 2024 22:20:10

ПУЛИКОВ АНАТОЛИЙ СТЕПАНОВИЧ

ПУЛИКОВ АНАТОЛИЙ СТЕПАНОВИЧ Статья в формате PDF 101 KB...

21 03 2024 10:42:25

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::