МОДЕЛИРОВАНИЕ ФУНКЦИОНИРОВАНИЯ ДИАФРАГМЫ ВЫТЕСНИТЕЛЬНОЙ СИСТЕМЫ > Полезные советы
Тысяча полезных мелочей    

МОДЕЛИРОВАНИЕ ФУНКЦИОНИРОВАНИЯ ДИАФРАГМЫ ВЫТЕСНИТЕЛЬНОЙ СИСТЕМЫ

МОДЕЛИРОВАНИЕ ФУНКЦИОНИРОВАНИЯ ДИАФРАГМЫ ВЫТЕСНИТЕЛЬНОЙ СИСТЕМЫ

Солодилова Е.М. Глушков С.В. Статья в формате PDF 640 KB

Работа посвящена моделированию функционирования диафрагмы - разделителя жидкостной и газовой полостей вытеснительной системы. В вытеснительных системах поступление топлива в камеру сгорания paкетного двигателя обеспечивается давлением наддува в топливных баках, создаваемое сжатым газом, чаще всего азотом или гелием. Известны вытеснительные системы подачи компонентов топлива для жидкостных paкетных двигателей, которые содержат баки горючего и окислителя, соединенные с газовым аккумулятором давления и камерой сгорания через пускоотсечные клапаны и регулировочные шайбы [1]. Из схемы подачи топлива исключается турбонасосный агрегат, а компоненты топлива поступают из баков прямо на главные клапаны paкетного двигателя. Давление в топливных баках при вытеснительной подаче должно быть выше, чем в камере сгорания. Преимуществами вытеснительной системы является простота конструкции и скорость реакции двигателя на комaнду пуска, особенно, в случае использования самовоспламеняющихся компонентов топлива. Такие двигатели служат для выполнения маневров космических аппаратов в космическом прострaнcтве. Вытеснительная система была применена во всех трёх двигательных установках лунного корабля Аполлон - служебной (тяга 9 760 кГс), посадочной (тяга 4 760 кГс), и взлётной (тяга 1 950 кГс) [2].

Типовая вытеснительная система состоит из нескольких баков с компонентами топлива (с горючим и окислителем), шар-баллонов, заполненных рабочим газом, магистралей, клапанов и прочей арматуры.

Топливный бак представляет собой шарообразную конструкцию, сваренную из двух штампованных и механически обработанных полусфер (рис. 1), приваренных к шпангоуту. В каждой полусфере имеется штуцер для подвода рабочего газа и oпopoжнения компонентов топлива. Бак выполнен из алюминиевого сплава. В одной из полусфер установлен металлический разделитель полостей - диафрагма.

Диафрагма представляет собой штампованную конструкцию, выполнена из технически чистого алюминия, что позволяет ей работать в области пластических деформаций без разрушения (это является условием обеспечения герметичности между газовой и жидкостной полостями).

Диафрагма является ответственным элементом, к которому предъявляются высокие требования обеспечения надежности. Из каждой партии диафрагм несколько единиц подвергаются наземным испытаниям как отдельно, так и в составе топливного бака.

В работе описаны результаты проведения вычислительного эксперимента по испытанию диафрагмы с помощью универсального МКЭ-пакета ANSYS.

Рис. 1. Топливный бак в разрезе

Конструкция диафрагмы является полностью осесимметричной, равно как и действующее внутреннее давление. В силу этого задача рассмотрена в осесимметричной постановке. Использованы плоские 4-узловые конечные элементы первого порядка Plane182 в режиме осесимметричного поведения.

Поскольку диафрагма работает в области больших неупругих деформаций, то материал требует задания соответствующих упругих и упруго-пластических хаpaктеристик в виде кривой деформирования при одноосном растяжении. В стенках сферического бака не допускается образование остаточных деформаций, материал принимаем линейно упругим (с последующим контролем превышения уровнем напряжений предела текучести материала).

Геометрическое моделирование рассматриваемого сечения проводится с помощью чертежного пакета Компас компании АСКОН, Через промежуточный формат экспорта - IGES сечение в виде набора точек и линий импортируется в рабочую область. Основываясь на замкнутых контурах линий, натягиваются топологически простые плоские поверхности, составляющие сечение.

Сетка конечных элементов регулярная, по толщине металла диафрагмы принимаем 3 элемента. По толщине стенки бака также назначаем 3 элемента. В меридиональном направлении размер элементов составляет 1 мм. Для учета контакта поверхности диафрагмы со стенкой бака при работе вытеснительной системы необходимо назначение специальных контактных пар элементов - целевых (TARGE169) на поверхности бака и контактных (CONTA172) на поверхности диафрагмы. При этом для контактной пары указывается коэффициент трения. Нормали контактирующих поверхностей в процессе расчета должны быть направлены друг к другу. Тип контакта для рассматриваемой задачи «поверхность - в поверхность». Общее число элементов в модели составляет при расчете диафрагма-бак: 3250 элементов (из них 800 контактных), 3284 узла.

Граничные условия для диафрагмы - условие неразрывности (равносильно наложению запрета на поступательные радиальные перемещения для всех узлов на оси круговой симметрии), полная заделка цилиндрической части, приваренной к шпангоуту бака. Для бака граничные условия представляют условие неразрывности в полюсе и жесткое закрепление, обусловленное сваркой с жестким шпангоутом. Жесткость шпангоута велика, и данный конструктивный элемент не моделируется, а учитывается в виде граничных условий.

Нагрузка на диафрагму представлена медленно нарастающим давлением в газовой полости до предельной величины. При этом жесткий разделитель жидкостной и газовой сред деформируется в сторону уменьшения объема жидкостной полости, тем самым выдавливая жидкость через специальный штуцер в топливную магистраль. Одно из промежуточных состояний диафрагмы в процессе работы схематично изображено на рис. 2.

 

Рис. 2. Схема работы диафрагмы топливного бака

Конечно-элементная модель рассматриваемой части сферического топливного бака, состоящая из диафрагмы и верхней полусферы бака, представлена на рис. 3.

 

Рис. 3. КЭ модель «Диафрагма-верхняя полусфера бака»

Задача рассматривается в квазистатической постановке, время играет роль относительного параметра и фактически является множителем при нагрузке на текущем шаге. Решение задачи выполняется методом конечных элементов в геометрически и физически нелинейной постановке, т.е. с учётом больших перемещений, пластических деформаций и нелинейного поведения материала.

При работе диафрагма имеет возможность свободно деформироваться, вытесняя топливо, только в пределах прострaнcтва, ограниченного стенками бака. Конечно, стенки бака могут деформироваться при вступлении в контакт с диафрагмой и совместном восприятии давления газовой полости, но эти деформации невелики.

Для состояния, соответствующего максимальной величине давления со стороны газовой полости, на рис. 4 изображена изоповерхность эквивалентных напряжений по теории Мизеса. Исходя из перемещений точек диафрагмы, можно вычислить объем образующейся паразитной полости между диафрагмой и стенкой бака в области шпангоута. Кроме того, из представленной на рис. 4 картины деформированного состояния системы диафрагма-бак может быть вычислен объем не выдавленного в процессе штатной работы системы топлива.

 

Рис. 4. Изоповерхность эквивалентных напряжений

Список литературы

  1. Шевелюк М.И. Теоретические основы проектирования жидкостных paкетных двигателей. - М. : Оборонгиз, 1960.
  2. Пилотируемые полёты на Луну, конструкция и хаpaктеристики SATURN V APOLLO // Реферат ВИНИТИ. - М., 1973.


ЦИРКИН ВИКТОР ИВАНОВИЧ

ЦИРКИН ВИКТОР ИВАНОВИЧ Статья в формате PDF 216 KB...

24 04 2024 4:40:32

УРОВНИ ВЕЖЛИВОГО ОБЩЕНИЯ

УРОВНИ ВЕЖЛИВОГО ОБЩЕНИЯ Статья в формате PDF 324 KB...

19 04 2024 9:55:38

ПОЛОВЫЕ РАЗЛИЧИЯ В ДЕНДРОАРХИТЕКТОНИКЕ НЕЙРОНОВ ЗАДНЕГО КОРТИКАЛЬНОГО ЯДРА МИНДАЛЕВИДНОГО КОМПЛЕКСА МОЗГА

ПОЛОВЫЕ РАЗЛИЧИЯ В ДЕНДРОАРХИТЕКТОНИКЕ НЕЙРОНОВ ЗАДНЕГО КОРТИКАЛЬНОГО ЯДРА МИНДАЛЕВИДНОГО КОМПЛЕКСА МОЗГА Впервые с использованием метода Гольджи выявлены пoлoвые различия в дендроархитектонике нейронов заднего кортикального ядра МТ мозга пoлoвoзрелых крыс. Показано, что длинноаксонные редковетвистые нейроны у самцов имеют большее число первичных дендритов, а длинноаксонные густоветвистые нейроны обладают большей общей длиной дендритов у самок. ...

15 04 2024 13:24:13

ПАРАЛЛЕЛЬНЫЙ АЛГОРИТМ (2,1)-МЕТОДА ПЕРЕМЕННОГО ШАГА

ПАРАЛЛЕЛЬНЫЙ АЛГОРИТМ (2,1)-МЕТОДА ПЕРЕМЕННОГО ШАГА Статья в формате PDF 505 KB...

02 04 2024 23:37:23

АНАЛИЗ СОВРЕМЕННОГО СОСТОЯНИЯ ГОЛЬФ ПОЛЕЙ

АНАЛИЗ СОВРЕМЕННОГО СОСТОЯНИЯ ГОЛЬФ ПОЛЕЙ Статья в формате PDF 323 KB...

21 03 2024 7:20:54

ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ГРАВИЛАТА ГОРОДСКОГО И ГРАВИЛАТА РЕЧНОГО В КАЧЕСТВЕ КОРМОВЫХ КУЛЬТУР БЕЛГОРОДСКОЙ ОБЛАСТИ

ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ГРАВИЛАТА ГОРОДСКОГО И ГРАВИЛАТА РЕЧНОГО В КАЧЕСТВЕ КОРМОВЫХ КУЛЬТУР БЕЛГОРОДСКОЙ ОБЛАСТИ Благодаря образованию сплошных посадок во многих районах Белгородской области и повсеместному произрастанию преимущественно на нарушенных местообитаниях, гравилаты могут стать хорошим подспорьем в заготовке трав на корма, особенно в неурожайные засушливые годы. Гравилат городской и гравилат речной имеют следующие хаpaктеристики по питательности кормов: протеин 10,50, 8,31 % соответственно, жир – 2,81, 373 %, редуцирующие сахара – 1,11, 2,39 %, каротин – 37,44, 24,13 мг/кг, витамин Е – 278, 250 мг/кг, витамин С – 352,0, 394,0 мг/кг, витамин А – 18,5, 25,71 мг/кг, основные микроэлементы в достаточно большом объёме. Железа у гравилата городского – 52,2 мг/кг, гравилата речного – 34,72 мг/кг, марганца – 14,53; 6,7 мг/кг соответственно, меди – 2,1; 1,35 мг/кг, цинка – 10,03; 4,7 мг/кг. Кроме этих микроэлементов содержатся другие минеральные вещества в следующих соотношениях: гравилат городской – массовая доля кальция – 0,40 %, фосфора – 0,074 %, магния – 0,15 %, натрия – 0,009 %, калия – 0,57 %, серы – 0,072 %; гравилат речной – кальций – 0,73 %, фосфор – 0,06 %, магний – 0,13 %, натрий – 0,011 %, калий – 0,62 %, сера – 0,08 %. ...

19 03 2024 6:20:14

НЕЙРОГЕННЫЕ МЕХАНИЗМЫ РЕГУЛЯЦИИ МЫШЕЧНОГО ТОНУСА

НЕЙРОГЕННЫЕ МЕХАНИЗМЫ РЕГУЛЯЦИИ МЫШЕЧНОГО ТОНУСА Статья в формате PDF 300 KB...

17 03 2024 7:34:39

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::