ПРОМЕЖУТОЧНОЕ ПРЕДСТАВЛЕНИЕ ПРАВИЛЬНОЙ РАСКРАСКИ ГРАФА В ОСТРОВНОЙ МОДЕЛИ ГЕНЕТИЧЕСКОГО АЛГОРИТМА. РАЗЛИЧНЫЕ ФИТНЕС-ФУНКЦИИ > Полезные советы
Тысяча полезных мелочей    

ПРОМЕЖУТОЧНОЕ ПРЕДСТАВЛЕНИЕ ПРАВИЛЬНОЙ РАСКРАСКИ ГРАФА В ОСТРОВНОЙ МОДЕЛИ ГЕНЕТИЧЕСКОГО АЛГОРИТМА. РАЗЛИЧНЫЕ ФИТНЕС-ФУНКЦИИ

ПРОМЕЖУТОЧНОЕ ПРЕДСТАВЛЕНИЕ ПРАВИЛЬНОЙ РАСКРАСКИ ГРАФА В ОСТРОВНОЙ МОДЕЛИ ГЕНЕТИЧЕСКОГО АЛГОРИТМА. РАЗЛИЧНЫЕ ФИТНЕС-ФУНКЦИИ

Данилова Е.Ю. Статья в формате PDF 272 KB

Пусть дан граф G, описываемый двумя множествами: U - множество вершин и V - множество ребер (U = {u1, u2, ..., un}, V = {(ui, uj)}i,j∈[1, n], i∈j). Раскраска графа - это функция f, преобразующая множество вершин U в отрезок натурального ряда {1, 2, 3, ..., K}: f: U → {1, 2, 3, ..., K}. Если при этом выполняется условие, что для любых (ui, uj)∈V, f(ui) ≠ f(uj), то раскраска называется правильной, а граф G - K-раскрашиваемым [1]. Если K - минимальное число, при котором граф является K-раскрашиваемым, то K называется хроматическим числом графа. Одним из способов решения задачи нахождения хроматического числа графа являются генетические алгоритмы.

В работе [2] представлены результаты исследования совмещения различных способов кодирования особей в одном генетическом алгоритме. Один из рассмотренных способов кодирования - с помощью промежуточного представления особи. Для задачи нахождения хроматического числа графа промежуточным представлением является гамильтонов цикл, который представляет собой порядок обхода графа, подающийся на вход «жадному» алгоритму. В этом случае под фитнесс-функцией можно понимать непосредственно «жадный» алгоритм. В работе рассматриваются два «жадных» алгоритма - классический и измененный.

Пусть дан граф G размерности n и перестановка s = {p1, p2, ..., pn} из n элементов. Исходя из определения перестановки: (∀i: pi ∈ [1; n]) & (∀ i, j: pi ≠ pj). Таким образом, перестановкой можно представлять порядок обхода графа. Будем обходить граф в соответствии с перестановкой s.

В классическом «жадном» алгоритме для каждой новой вершины по порядку проверяем цвета. Красим вершину в первый же подходящий цвет. Если ни в один из наличествующих цветов покрасить вершину нельзя, то добавляем еще один цвет, и красим вершину в него.

В измененном «жадном» алгоритме вершина с номером p1 красится в первый цвет. Далее для каждой последующей вершины pi проверяется, нельзя ли ее покрасить в тот же цвет, что и предыдущую вершину. Если это можно сделать, то вершина красится в тот же цвет, что и предыдущая. Иначе ищется минимальный цвет, несмежный вершине. Если такой цвет найден, то вершина красится в этот цвет, иначе вершина красится в новый цвет.

Предполагалось, что использование различных «жадных» алгоритмов должно повысить вероятность получения правильного ответа.

В данной работе в островной модели различным островам приписываются генетические алгоритмы с различными фитнесс-функциями. При тестировании использовалось 6 островов, на трех из которых выполнялись генетические алгоритмы с первым «жадным» алгоритмом в качестве фитнесс-функции, на других трех - со вторым. Для сравнения тесты были проведены на шестиостровной модели, где все островы использовали первый алгоритм, и на шестиостровной модели, где все островы использовали второй алгоритм. Отдельно генетические алгоритмы были протестированы в виде серии запусков.

Тесты проводились на 16 графах с различной размерностью и различными хроматическими числами. Максимальное число вершин графа, использующихся в тестировании, - 100, максимальное хроматическое число - 10.

Каждая из островных моделей запускалась по 34 раза для каждого графа, серии запусков содержали по 102 запуска.

Из результатов тестирований, проведенных на данный момент, можно сделать вывод, что использование различных фитнесс-функций на различных островах в среднем не улучшает решение по сравнению с островной моделью, использующей один из «жадных» алгоритмов. Тем не менее, большинство тестов делятся на две группы: где первый алгоритм работает лучше совмещенного, а совмещенный работает лучше второго; и где наоборот - второй работает лучше совмещенного, а совмещенный алгоритм работает лучше первого.

Список литература

  1. Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. - М.: Мир, 1982. - 416 с.
  2. Данилова Е.Ю. Комбинация генетических алгоритмов для решения NP-полных задач на примере задачи нахождения хроматического числа графа // Современные проблемы математики и ее прикладные аспекты: сборник статей (по материалам научно-пpaктической конференции молодых ученых. Пермь, 12 марта 2010 г.). - Пермь: ПГУ, 2010. - С. 36-41.


ОБ ОСОБЕННОСТЯХ СОВРЕМЕННОЙ РУССКОЙ ФИЛОСОФИИ

ОБ ОСОБЕННОСТЯХ СОВРЕМЕННОЙ РУССКОЙ ФИЛОСОФИИ Статья в формате PDF 110 KB...

19 04 2024 4:10:21

СТРОИТЕЛЬНАЯ АКУСТИКА

СТРОИТЕЛЬНАЯ АКУСТИКА Статья в формате PDF 152 KB...

12 04 2024 16:41:41

НАДЕЖДА И РЕАЛЬНОСТЬ ОНКОИММУНОЛОГИИ

НАДЕЖДА И РЕАЛЬНОСТЬ ОНКОИММУНОЛОГИИ Статья в формате PDF 114 KB...

10 04 2024 8:49:24

P.aeruginosa как представитель госпитальной флоры

P.aeruginosa как представитель госпитальной флоры Статья в формате PDF 115 KB...

06 04 2024 22:17:10

«Квантовая медицина»  медицина будущего

«Квантовая медицина»  медицина будущего Статья в формате PDF 104 KB...

04 04 2024 14:48:42

СИСТЕМНОЕ ДЕЙСТВИЕ И ЭФФЕКТ ЭНЕРГИИ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ (ЭМП) НА ГИДРАТАЦИЮ, МЕТАБОЛИЗМ ТКАНЕЙ, СОСТОЯНИЕ СТРЕССА ЗДОРОВОГО И БОЛЬНОГО ЧЕЛОВЕКА

СИСТЕМНОЕ ДЕЙСТВИЕ И ЭФФЕКТ ЭНЕРГИИ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ (ЭМП) НА ГИДРАТАЦИЮ, МЕТАБОЛИЗМ ТКАНЕЙ, СОСТОЯНИЕ СТРЕССА ЗДОРОВОГО И БОЛЬНОГО ЧЕЛОВЕКА С помощью комплекса ядерно-физических методов, ЯМР-спектроскопии, выявлена неоднозначная степень насыщения связанной фазы воды молекулами воды и ряда химических элементов, где основу их специфической связи представляет многослойная поляризованная структура сыворотки крови и лимфы здоровых людей, пациентов с актуальными заболеваниями. Разработана иерархическая двухуровневая модель, согласно собственной концепции сопряженного действия и эффекта энергии, системного ЭМП, энергии биохимических цикловых процессов, объединенных потоком протонов, регулируемых буферной системой и гормонами стресса. ...

30 03 2024 13:20:39

ПРЕДЕЛЬНЫЕ ЦИКЛЫ В СЛОЖНЫХ ЭКОЛОГИЧЕСКИХ СИСТЕМАХ «ХИЩНИКЖЕРТВА»

ПРЕДЕЛЬНЫЕ ЦИКЛЫ В СЛОЖНЫХ ЭКОЛОГИЧЕСКИХ СИСТЕМАХ «ХИЩНИКЖЕРТВА» В настоящей работе рассматриваются сложные иерархические системы «хищник -жертва - продуцент». В основу исследования таких систем положены достаточно хорошо известные экспериментальные данные, собранные компанией «Гудзонов залив» за более чем столетний период. На нижнем уровне сложной иерархической системы исследуется влияние солнечного потока на скорость роста продуцентов (деревьев, кустарников и т.д.). Показана возможность стохастических колебаний в многоуровневой системе. Подтверждена ранее высказанная гипотеза о возможности колебаний в системе «жертва -продуцент». Математическая модель описывает широкий спектр процессов и явлений, которые хаpaктерны для сложных экологических систем. ...

29 03 2024 16:50:53

ПЕРСПЕКТИВА ПРИМЕНЕНИЯ ФТОРИДА АММОНИЯ ДЛЯ ВЫДЕЛЕНИЯ СИНТЕТИЧЕСКИХ КАУЧУКОВ ИЗ ЛАТЕКСОВ

ПЕРСПЕКТИВА ПРИМЕНЕНИЯ ФТОРИДА АММОНИЯ ДЛЯ ВЫДЕЛЕНИЯ СИНТЕТИЧЕСКИХ КАУЧУКОВ ИЗ ЛАТЕКСОВ Изучена коагулирующая способность фторида аммония при выделении каучука из латекса СКС- 30АРК. Исследовано влияние температуры и концентрации раствора фторида аммония на полноту коагуляции. Проведена оценка свойств резиновых смесей и вулканизатов на основе каучука СКС-30 АРК, выделенного из латекса фторидом аммония. ...

20 03 2024 22:28:29

ЛЕД И ЛЕДНИКИ

ЛЕД И ЛЕДНИКИ Статья в формате PDF 279 KB...

19 03 2024 17:47:59

САМООБРАЗОВАНИЕ СПЕЦИАЛИСТА В РОССИИ

САМООБРАЗОВАНИЕ СПЕЦИАЛИСТА В РОССИИ Статья в формате PDF 94 KB...

18 03 2024 3:27:21

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::