ОСОБЕННОСТИ ПРИМЕНЕНИЯ КОЭФФИЦИЕНТА ИНТЕНСИВНОСТИ НАГРЕВА МЕТАЛЛА ДЛЯ ОБЕСПЕЧЕНИЯ ОПТИМАЛЬНЫХ РЕЖИМОВ РАБОТЫ ЭЛЕКТРОПЕЧНЫХ АГРЕГАТОВ > Полезные советы
Тысяча полезных мелочей    

ОСОБЕННОСТИ ПРИМЕНЕНИЯ КОЭФФИЦИЕНТА ИНТЕНСИВНОСТИ НАГРЕВА МЕТАЛЛА ДЛЯ ОБЕСПЕЧЕНИЯ ОПТИМАЛЬНЫХ РЕЖИМОВ РАБОТЫ ЭЛЕКТРОПЕЧНЫХ АГРЕГАТОВ

ОСОБЕННОСТИ ПРИМЕНЕНИЯ КОЭФФИЦИЕНТА ИНТЕНСИВНОСТИ НАГРЕВА МЕТАЛЛА ДЛЯ ОБЕСПЕЧЕНИЯ ОПТИМАЛЬНЫХ РЕЖИМОВ РАБОТЫ ЭЛЕКТРОПЕЧНЫХ АГРЕГАТОВ

Шпиганович А.Н. 1 Ищенко А.Е. 1
1 ФБГОУ ВПО «Липецкий государственный технический университет»
В статье даются разъяснения к применению зависимости коэффициента интенсивности нагрева (kи.н) металла от тока электрода с целью обеспечения оптимальных электрических и технологических показателей работы электропечных агрегатов для случаев экранированного и неэкранированного горения дуг. Представлено соспоставление скорости нагрева металла и kи.н для двух указанных случаев. Статья в формате PDF 465 KB дуговая сталеплавильная печьагрегат «печь-ковш»скорость нагрева металлакоэффициент интенсивности нагреваэлектрическая схема замещениярафинировочный шлак 1. Никольский, Л.Е. Тепловая работа дуговых сталеплавильных печей / Л.Е. Никольский, В.Д. Смоляренко, Л.Н. Кузнецов. – М.: Металлургия, 1981. – 320 с. 2. Тулуевский, Ю.Н. Экономия электроэнергии в дуговых сталеплавильных печах / Ю.Н. Тулуевский, И.Ю. Зиннуров, А.Н. Попов, В.С. Галян. – М.: Энергоатомиздат,1987. – 104 с. 3. Смоляренко, В.Д. Энергетический баланс дуговых сталеплавильных печей / В.Д. Смоляренко, Л.Н. Кузнецов. – М.: Энергия, 1973. – 88 с.

Известно, что основным технологическим показателем работы электропечных агрегатов (дуговая сталеплавильная печь (ДСП), агрегат «печь-ковш» (АПК)) является скорость нагрева металла. На каждой ступени трaнcформации электрический режим работы агрегата должен быть организован таким образом, чтобы эта величина достигала максимального значения. Скорость нагрева металла зависит от ряда электрических и технологических показателей плавки: тока электрода IЭ, напряжения дуги UД, степени заглубления дуги в металл, наличия и толщины слоя шлака hШ в плавильном прострaнcтве.

Установлено, что имеется примерно пропорциональная зависимость между т.н. коэффициентом интенсивности нагрева kИ.Н, равным произведению тока дуги на ее мощность, и скоростью нагрева металла vН [1]. Хаpaктер зависимости kИ.Н от тока электрода носит экстремальный хаpaктер, поэтому легко определить такую величину IЭ, при которой kИ.Н примет максимальное значение. Для определения kИ.Н необходимо составить схему замещения электрической части электропечного агрегата. Поскольку применение kИ.Н оправдано только тогда, когда дуги, экранированные или неэкранированные шлаком, горят над жидким металлом (стадии окисления и рафинировки), схема замещения может быть принята линейной и однофазной, т.к. в этом случае несимметрия и несинусоидальность токов и напряжений в питающей сети выражены настолько, что возможно пренебречь данными явлениями. На рис. 1,б) представлена данная схема замещения, в ней сопротивление RШ.Y, моделирующее ответвление части тока электрода в шлак, учитывается при коэффициенте экранирования дуги kЭ.Д > 1, т.е. в случае, когда дуга экранирована шлаком по всей длине и имеется непосредственный контакт между шлаком и электродом. Для неэкранированных дуг обозначим коэффициент интенсивности нагрева металла как kИ.Н.Н и определим согласно (1):

(1)

Для дуг, экранированных шлаком, с учетом того, что при значительных величинах hШ часть тока электрода ответвляется в шлак, обозначим рассматриваемую величину как kИ.Н.Э и определим согласно (2):

(2)

где RШ.УД.Y – удельное сопротивление слоя шлака единичной толщины (например 1, см).

Если воспринимать зависимость vН = f(kИ.Н) так, как она описана в [1], то получится, что большему значению kИ.Н соответствует большая скорость нагрева металла. Однако более подробные исследования этой зависимости, результаты которых представлены в [2], и наблюдения за работой 330 т. агрегатов «печь-ковш», установленных в Конверторном цехе № 2 ОАО «НЛМК», показали, что при наличии шлака в ковше меньшим значениям kи.н могут соответствовать большие скорости нагрева. Для подтверждения правомерности рекомендаций о поддержании максимума kИ.Н для достижения максимальной скорости нагрева металла согласно (2) был произведен расчет KИ.Н.Э для различных значений тока электрода, а скорость нагрева металла – из решения системы дифференциальных уравнений, описывающих тепловой режим АПК, где первое уравнение будет описывать тепловое состояние металла, а второе – шлака:

(3)

где dQД.М – дифференциал количества теплоты, выделяемого дугой в пределах металла; dQМ.тепл – дифференциал количества теплоты, предаваемого металлу шлаком; k – коэффициент, определяющий долю теплоты, обусловленной электрическим нагревом, в общем количестве теплоты, получаемом металлом и шлаком (согласно [1] при рафинировке на электрический нагрев приходится около 50 % приходной части теплового баланса (остальное обусловлено химическими реакциями и теплотой, вносимой предварительно подогретыми шлакообразующими и присадками)); dQМ – дифференциал теплосодержания металла; dQД.Ш – дифференциал количества теплоты, выделяемого дугой в пределах шлака; dQШ.Рез – дифференциал количества теплоты, выделяемого в шлаке за счет резистивного нагрева; dQШ – дифференциал теплосодержания шлака; dQП.Дн, dQП.Ст, dQП.Кр – дифференциалы потерь тепла конвекцией и излучением через днище, стенки, крышку ковша соответствунно; dQП.Г, dQП.В – дифференциалы потерь тепла с отходящими газами и охлаждающей водой [1, 3].

б

Рис. 1. Схемы замещения электрической части электропечного агрегата: а – поясняющая схема электроснабжения; б – схема замещения для определения kИ.Н:, – линейный ток и фазное напряжение, потрeбляемые печным трaнcформатором из сети; , , , – сопротивления короткого замыкания и холостого хода печного трaнcформатора соответственно; RКС, XКС – сопротивления короткой сети; RШ.Y – сопротивление слоя шлака, приведенное к напряжению дуги; RД – сопротивление дуги. – ток холостого хода печного трaнcформатора; , – ток и напряжение дуги; – ток, протекающий через слой шлака. Все токи, напряжения и сопротивления приведены к вторичному напряжению печного трaнcформатора

Расчет осуществлялся для первых трех ступеней трaнcформации потому, что максимуму kИ.Н.Э на них соответствуют токи, не превышающие допустимых для печного трaнcформатора значений. Результаты этих расчетов представлены на рис. 2. Сопоставление kИ.Н.Э и скорости нагрева металла показало, что на одной ступени трaнcформации при постоянной толщине шлака большим значениям kИ.Н соответствуют большие значения vН.

а)б)в)

Рис. 2. Зависимости скорости нагрева vН металла от коэффициента интенсивности нагрева металла kИ.Н.Н для дуг, экранированных шлаком:а – для первой ступени трaнcформации; б – для второй ступени трaнcформации; в – для третьей ступени трaнcформации.

Необходимо также рассмотреть данную зависимость для случаев, когда дуга горит без экранирования. Исследуемые агрегаты из-за опасности повреждения крышки в таком режиме не работают, поэтому скорость нагрева металла была определена расчетным путем, исходя из того, что металл поглощает 100 % мощности, выделяемой участком дуги, погруженном в него, и 25 % мощности открытого участка дуги за счет отражения на него лучистых потоков от футеровки [1]. Остальные 75 % энергии открытого участка дуги теряются через крышку, с охлаждающей водой и отходящими газами. Исходя из этого, было составлено уравнение теплового баланса:

(4)

где UД.М – падение напряжения на участке дуги в пределах металла, определяемое с учетом того, что градиент напряжения столба неэкранированной дуги равен 1,0 [1]; QМ – теплосодержание металла; QП – тепловые потери конвекцией и излучением через стены и днище ковша; PД.Н – мощность неэкранированной дуги.

Рис. 3. Зависимость скорости нагрева vН.Н металла от коэффициента интенсивности нагрева металла kИ.Н.Н для неэкранированных дуг

Расчет скорости нагрева металла, не экранированного шлаком, осуществлялся для каждой ступени трaнcформации, ток электрода принимался равным соответствующим эксплуатационным значениям. Результаты расчетов скорости нагрева и kИ.Н.Н представлены на рис. 3. Из их анализа можно заключить, что при горении неэкранированных дуг на жидкий металл скорость его нагрева имеет один и тот же хаpaктер зависимости от kИ.Н.Н для всех ступеней трaнcформации.

Можно сделать вывод, что при определении параметров оптимального электрического режима достижением максимума kИ.Н для экранированных дуг следует анализировать работу агрегата на определенной ступени трaнcформации при определенной толщине шлака, а для неэкранированных дуг зависимость vН = f(kИ.Н) можно использовать для всех ступеней трaнcформации.



«ВЕЛИКАЯ ДЕПРЕССИЯ» – СОВРЕМЕННЫЙ ВЗГЛЯД

«ВЕЛИКАЯ ДЕПРЕССИЯ» – СОВРЕМЕННЫЙ ВЗГЛЯД Статья в формате PDF 268 KB...

24 04 2024 1:16:41

ЛЖЕУЧЕНИЯ И ПАРАНАУКА ХХ ВЕКА. ЧАСТЬ 2

ЛЖЕУЧЕНИЯ И ПАРАНАУКА ХХ ВЕКА. ЧАСТЬ 2 Проведен анализ общепринятых учений и научных теорий, имевших широкую аудиторию в вузах и научно-исследовательских институтах прошлого века. Выявлена недостаточность абстpaктной потенции в мыслительной жизни homo sensus, главная альтернатива которой – эмоциональный мир, чувственность и вера. Свойство верить познающего субъекта не носит хаpaктер религиозности, однако имеет общие с ней основания. Роднит религию и научную веру стремление не понять, а принять смутные представления, сулящие сиюминутную пользу и выгоду, объединяет желание увидеть в таинственном и запредельном нечто к себе доброжелательное, освобождающее от мучительного предназначения думать и, следовательно, уводящее от необходимости работать – работать без самообмана, но эффективно и достойно homo sapiens. ...

21 04 2024 9:35:46

БАКТЕРИАЛЬНАЯ КОЛОНИЗАЦИЯИНДОМЕТАЦИН-ИНДУЦИРОВАННЫХ ЯЗВ ТОНКОГО КИШЕЧНИКА КРЫСЫ

БАКТЕРИАЛЬНАЯ КОЛОНИЗАЦИЯИНДОМЕТАЦИН-ИНДУЦИРОВАННЫХ ЯЗВ ТОНКОГО КИШЕЧНИКА КРЫСЫ На поверхности инометацин-индуцированной язвы тонкого кишечника через 24 часа после его однократного введения формируется бактериальный биофильм. ...

19 04 2024 6:16:14

КОМПЬЮТЕРНЫЙ АНАЛИЗ ОСОБЕННОСТЕЙ ВТОРИЧНЫХ СТРУКТУР ГЛЮКОАМИЛАЗ ИЗ ASPERGILLUS AWAMORI И SACCHAROMYCOPSIS FIBULIGERA

КОМПЬЮТЕРНЫЙ АНАЛИЗ ОСОБЕННОСТЕЙ ВТОРИЧНЫХ СТРУКТУР ГЛЮКОАМИЛАЗ ИЗ ASPERGILLUS AWAMORI И SACCHAROMYCOPSIS FIBULIGERA С помощью программы компьютерного моделирования MolScript на базе данных рентгеноструктурного анализа (РСА) осуществлено сравнение вторичных структур глюкоамилаз из Aspergillus awamori и Saccharomycopsis fibuligera. Получены данные о типах вторичной структуры, количественном соотношении, топологии упорядоченных и нерегулярных участков. ...

18 04 2024 0:30:56

ДИРИЖЕРСКОЕ ИСКУССТВО С.А. КАЗАЧКОВА И КАЗАНСКАЯ ХОРОВАЯ ШКОЛА

ДИРИЖЕРСКОЕ ИСКУССТВО С.А. КАЗАЧКОВА И КАЗАНСКАЯ ХОРОВАЯ ШКОЛА В статье осмысливаются основные теоретические и эстетические аспекты дирижерской и педагогической деятельности С.А. Казачкова и последователей Казанской хоровой школы. Проведен анализ научных трудов С.А. Казачкова включающий осмысление сущности дирижерской профессии, выявление новых тенденций в творчестве, постижение природы дирижерского жеста. Показана сложность профессии дирижера, заключающейся в единении трех аспектов его деятельности: исполнительской, педагогической и управленческой, составляющей основу дирижерского искусства в культурном и эстетическом контексте. ...

15 04 2024 11:53:35

ДИФРАКЦИОННО-РЕФРАКЦИОННЫЕ ИНТРАОКУЛЯРНЫЕ ЛИНЗЫ

ДИФРАКЦИОННО-РЕФРАКЦИОННЫЕ ИНТРАОКУЛЯРНЫЕ ЛИНЗЫ Статья в формате PDF 111 KB...

11 04 2024 1:52:16

ПОКАЗАТЕЛИ ПЕРЕКИСНОГО ОКИСЛЕНИЯ ЛИПИДОВ И АНТИОКСИДАНТНОЙ ЗАЩИТЫ В СИСТЕМЕ «СЫВОРОТКА КРОВИЭРИТРОЦИТ» ПРИ ОСТРОЙ ЦИРКУЛЯТОРНОЙ ГИПОКСИИ

ПОКАЗАТЕЛИ ПЕРЕКИСНОГО ОКИСЛЕНИЯ ЛИПИДОВ И АНТИОКСИДАНТНОЙ ЗАЩИТЫ В СИСТЕМЕ «СЫВОРОТКА КРОВИЭРИТРОЦИТ» ПРИ ОСТРОЙ ЦИРКУЛЯТОРНОЙ ГИПОКСИИ Изучено влияние острой циркуляторной гипоксии на перекисное окисление липидов в системе «сыворотка крови - эритроцит». Показано, что острая кровопотеря сопровождается увеличением уровня малонового диальдегида во всех компонентах системы. Одновременно изменяется активность каталазы, глутатионредуктазы и «антиоксидантной белковой буферной системы», что может свидетельствовать об активации антиоксидантной защитной системы. ...

06 04 2024 12:53:28

A FOCUS ON COMMUNICATION SKILLS (PART 1)

A FOCUS ON COMMUNICATION SKILLS (PART 1) Статья в формате PDF 274 KB...

31 03 2024 2:42:24

ВЛИЯНИЕ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ НА ИЗВЛЕЧЕНИЕ КАРОТИНОИДОВ И АСКОРБИНОВОЙ КИСЛОТЫ В ПРОЦЕССЕ ДВУХФАЗНОЙ ЭКСТРАКЦИИ ПЛОДОВ ШИПОВНИКА

ВЛИЯНИЕ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ НА ИЗВЛЕЧЕНИЕ КАРОТИНОИДОВ И АСКОРБИНОВОЙ КИСЛОТЫ В ПРОЦЕССЕ ДВУХФАЗНОЙ ЭКСТРАКЦИИ ПЛОДОВ ШИПОВНИКА Использование двухфазной экстpaкции в присутствии поверхностно-активных веществ (ПАВ) обеспечивает увеличение выхода гидрофильных и липофильных биологически-активных веществ (БАВ) из растительного сырья. Экстрагировали высушенные плоды шиповника 70% этиловым спиртом и подсолнечным маслом в присутствии различных комбинаций эмульгаторов твина-80 и Т-2 (ГЛБ = 5,5÷14,5). Показано, что по сравнению с двухфазной экстpaкцией без ПАВ переход каротиноидов (липофильных БАВ) в масляную фазу возрастает в 1,5 раза в присутствии эмульгатора 2-го рода (ГЛБ = 5,5) и не изменяется в присутствии эмульгатора 1-го рода (ГЛБ = 14,5). Переход гидрофильных БАВ (аскорбиновая кислота) в водно-спиртовую фазу возрастает в 2 раза при ГЛБ = 14,5 и падает с уменьшением чисел ГЛБ. ...

29 03 2024 6:15:11

Право и долг в самосознании русского народа

Право и долг в самосознании русского народа Статья в формате PDF 113 KB...

27 03 2024 10:36:15

БОРИС ФЕДОРОВИЧ КИРЬЯНОВ

БОРИС ФЕДОРОВИЧ КИРЬЯНОВ Статья в формате PDF 264 KB...

19 03 2024 16:55:48

СНОПОВ АЛЕКСАНДР ИВАНОВИЧ

СНОПОВ АЛЕКСАНДР ИВАНОВИЧ Статья в формате PDF 270 KB...

17 03 2024 3:29:36

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::