СИНТЕЗ ДИАГНОСТИЧЕСКИХ МАТРИЦ ПРИ СКРИНИНГЕ > Полезные советы
Тысяча полезных мелочей    

СИНТЕЗ ДИАГНОСТИЧЕСКИХ МАТРИЦ ПРИ СКРИНИНГЕ

СИНТЕЗ ДИАГНОСТИЧЕСКИХ МАТРИЦ ПРИ СКРИНИНГЕ

Артеменко М.В. Статья в формате PDF 134 KB

В процессе автоматизации и объективизации скрининговых операций возникает задача построения адекватных решающих правил по соотнесению исследуемого пациента к определенному классу заболеваний по результатам базовых лабораторных исследований (например, общему анализу крови). В связи с этим, базируясь на клинический опыт теоретической и экспериментальной медицины школы Завьялова А.В. и собственные исследования, предлагается следующая технология построения диагностических решающих правил.

На первом этапе осуществляется сбор фактологического репрезентативного материала и отбрасываются артефакты. Общая выборка случайным образом делится на три части - обучающую, настраивающую и экзаменационную. На перовой рассчитываются показатели системной организации (см. далее), на второй определяются функции принадлежности, на третьей подвыборке определяется эффективность идентифицированных диагностических решающих правил. Соотношения статистических мощностей указанных подвыборок рекомендуется выбирать исходя из взаимной репрезентативности (они должны подчиняться подобным законам распределения). Опыт доказывает, что этого можно достичь, используя случайную сортировку (равномерный закон распределения) и принцип «золотого сечения», т.е. примерное соотношение объемов указанных подвыборок - 0,46:0,32:0,22.

На втором этапе на обучающей выборке синтез диагностических матриц предлагается осуществлять по следующей методике.

Допустим нам необходимо осуществить диагностику К классов. (В медицине - один из классов - базовый - это здоровые люди.) В общем случае формируется матрица признакового прострaнcтва Х. Для каждого признака j в классе k определяем закон распределения (при маломощности подвыборок рекомендуется в данном случае использовать метод Уразбахтина И.Г. - «приведенные распределения») и ему соответствующую медиану Мjk и среднеквадратичное отклонение от нее . Для классов k и l определяются матрицы парной корреляции, соответственно, состоящие из элементов  и  (под элементами  здесь понимаются значения корреляционного отношения в классе l между признаками i и j, превышающие выбранный уровень статистической значимости; если рассчитанное значение меньше порога, то ему соответствующее значение элемента матрицы принимается равным 0). Тогда некоторая «точка-пациент»  - классу хаpaктеризуется следующим показателем отклонения (назовем его показателем системной организации) от «центра масс» медиан класса l PRml, определяемым по формуле (1).

(1)

где n- количество регистрируемых признаков.

Если есть возможность оценки информативности признаков (индивидуальной и совместной), например, с помощью экспертного анализа, анализа функций распределения или методом максимального правдоподобия, , то каждое слагаемое в формуле (1) необходимо умножить на данный коэффициент информативности.

После проведения описанной процедуры получаем для каждого класса вектор квадратов значений PRml , который хаpaктеризуется значением медианы МPRml. Изменяя k и l по всему множеству классов, получаем матрицу МPRК,К (К - количество классов).

Третий этап проводится, используя настраивающую выборку. Для каждого объекта z из нее по формуле (1) определяются показатели системной организации и формируется матрица ZPR, состоящая из элементов - квадратов значений PRz,l,k. Затем, для каждой точки z определяется матрица относительных отклонений от матрицы МPR - DPR:

                            (2)

i1,i2=1,K -номера диагностируемых классов.

Обpaбатывая следующим образом z матриц, формируем матрицу функций принадлежностей μ на носителях DPR. Определяются законы распределения Fi1,i2(DPRi1,i2) и, задавшись необходимыми точностью и уровнем статистической значимости, строятся классификационные интервалы ΔDPRi1,i2: ΔDPRi1,i2=Mi1,i2(DPRi1,i2)±γi1,i2·σi1,i2(DPRi1,i2), где Мi1,i2(), σi1,i2() - операторы вычисления моды и СКО(DPRz,i1,i2) в классах i1 и i2, соответственно, γi1,i2- множитель, определяющий размер классификационного интервала (вычисляется, исходя из анализа пересечений функций Fi1,i2(DPRi1,i2), Fi1,i1(DPRi1,i1), Fi2,i2(DPRi2,i2) Fi2,i1(DPRi2,i1) ).

Функции принадлежности определяются как: μi1,i2=Fi1,i2(DPRi1,i2)*(1-βi1,i2), если у обследуемого DPRi1,i2 ∉ ΔDPRi1,i2, и μi1,i2 = (1-βi1,i2), в противном случае. (βi1,i2 - ошибки второго рода применения решающих правил для элементов матрицы (i1,i2), определенные на настраивающей выборке).

На экзаменационной выборке рассчитываются коэффициенты согласия каппа между истинным диагнозом (здесь возможно так же применение мнения экспертов) и результатами диагностике по полученным матрицам MPR, DPR и μ. В случае хорошего результата, указанные матрицы используются в соответствующей автоматизированной системе скрининг диагностики.

При принятии решения для конкретного пациента применяется формулы (1) и (2) и определяется матрица классификационных значений функций принадлежностей μb по μ. Пользователю сообщается указанная матрица функций принадлежностей с указанием (выделением) L (L-свобода выбора решений) наиболее вероятных ситуаций и вектор коэффициентов уверенности соотнесения состояния пациента к определенному классу. К ним относятся ситуации с максимальными значениями функций принадлежностей и непротиворечивые между собой (определяются по анализу над и поддиагональных элементов). В качестве коэффициентов уверенностей рассматриваются значения функций принадлежности. Решающее правило о принадлежности состояния исследуемого к классу k формируется в виде заключения типа: «по результатам исследования пациент относится к классу (заболеванию) k с уверенностью UK» (k=1,...K).

Уверенность принадлежности к классу k UK рассчитывается следующим образом. Выделяются все значения функций принадлежности k-ой строки и k-го столбца, превышающий определенный пороговый уровень - пусть всего таких значений будет Т. Затем, применяется итерационная формула:

         (3)

UK0=0, t=1,2...T.

Теоретические исследования автора показали, что вместо (3) оптимальнее применять формулу (4), обладающей большей чувствительностью, для которой (3) является частным случаем обладающим плохим асимптотическим свойством по мере приближения к единичному значению.

,                    (4)

где .

Заметим, что если к матрице функций уверенностей μ применить процедуры агрегатирования (например, перемещение ее элементов таким образом, чтобы вокруг главной диагонали выстраивались элементы с максимальными значениями), то анализ вновь полученной матрицы позволяет выстроить иерархию классов в прострaнcтве состояний.

Формулу (4) применима так же для вычисления коэффициента уверенности наличия у пациента или заболевания А1 или заболевания А2 или заболевания А3 и т.д. В случае необходимости расчета коэффициента уверенности наличия у пациента заболевания А1 и заболевания А2 и заболевания А3 и т.д. рекомендуется применять формулу (5).

 ,    (5)

где .

В общем случае, необходимо учитывать коэффициенты неуверенности. Они могут быть построены аналогичным образом, построив матрицу функций непринадлежности.

Для описанной технологии синтеза и применения диагностической матрицы создано соответствующее программное обеспечение.



ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ ФОРМИРОВАНИЯ НАВЫКОВ ЗДОРОВОГО ОБРАЗА ЖИЗНИ УЧАЩИХСЯ СЕЛЬСКИХ ШКОЛ ВО ВНЕКЛАССНОЙ РАБОТЕ

ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ ФОРМИРОВАНИЯ НАВЫКОВ ЗДОРОВОГО ОБРАЗА ЖИЗНИ УЧАЩИХСЯ СЕЛЬСКИХ ШКОЛ ВО ВНЕКЛАССНОЙ РАБОТЕ В этой статье рассматриваются вопросы применения инновационных технологии формирования навыков здорового образа жизни учащихся сельских школ во внеурочное время. ...

22 04 2024 13:15:16

Дискурс переговоров в англоязычной коммуникации

Дискурс переговоров в англоязычной коммуникации Статья в формате PDF 319 KB...

18 04 2024 6:23:18

ИНФОРМАЦИОННЫЙ АНАЛИЗ СПЕРМЫ

ИНФОРМАЦИОННЫЙ АНАЛИЗ СПЕРМЫ Статья в формате PDF 164 KB...

14 04 2024 17:51:59

ИГРОВЫЕ МЕТОДЫ ПРЕПОДАВАНИЯ В УНИВЕРСИТЕТАХ

Статья в формате PDF 108 KB...

12 04 2024 16:33:36

ДИАГНОСТИЧЕСКИЕ И РЕАБИЛИТАЦИОННО-ПРОФИЛАКТИЧЕСКИЕ ТЕХНОЛОГИИ ОБЕСПЕЧЕНИЯ ЗДОРОВЬЯ СТУДЕНТОВВ ОБРАЗОВАТЕЛЬНОЙ СИСТЕМЕ ВУЗА

ДИАГНОСТИЧЕСКИЕ И РЕАБИЛИТАЦИОННО-ПРОФИЛАКТИЧЕСКИЕ ТЕХНОЛОГИИ ОБЕСПЕЧЕНИЯ ЗДОРОВЬЯ СТУДЕНТОВВ ОБРАЗОВАТЕЛЬНОЙ СИСТЕМЕ ВУЗА Проведено поэтапное исследование, которое включало в себя оценку индивидуальных резервов соматического здоровья (СЗ) и оценку функционального состояния вегетативной нервной системы на основе исследования вариабельности ритма сердца (ВРС). Уровень СЗ оценивался в баллах. В результате проведенного нами исследования было выявлено, что риск манифестации хронической сосудистой патологии достаточно высок в группе с низкими энергетическими резервами организма (уровнем здоровья «низким» и «ниже среднего»), а таковых у нас оказалось 54,5 % из всех обследованных студентов БелГУ. Следующим этапом исследования была проверка этой версии. При анализе вариабельности сердечного ритма учитывались: показатель общей мощности спектра нейрогумopaльной регуляции сердечного ритма (TP); показатель, отражающий реактивность парасимпатического отдела вегетативной нервной системы при проведении АОП; визуальная оценка степени кардио-респираторной синхронизации на основании данных спектрального анализа ВРС и пневмограммы. У обследуемых с низким уровнем соматического здоровья признаки вегетативной дисфункции различной степени выраженности наблюдались в 92,5 % случаев. В группе с низким уровнем СЗ реактивность парасимпатического отдела ВНС, отражающая адаптационные резервы организма, оказалась так же низкой. Таким образом, наша версия о взаимосвязи уровня соматического здоровья и частотой встречаемости вегетативной дисфункции полностью подтвердилась. Чем ниже уровень соматического здоровья, тем более вероятна манифестации хронической сосудистой патологии. При высоком уровне здоровья риск возникновения хронической соматической патологии минимален. ...

11 04 2024 20:32:28

ПСИХИЧЕСКОЕ ЗДОРОВЬЕ И ЭКОЛОГИЯ ЛИЧНОСТИ

ПСИХИЧЕСКОЕ ЗДОРОВЬЕ И ЭКОЛОГИЯ ЛИЧНОСТИ Рассматриваются психические, социальные и личностные компоненты здоровья. Анализируются различия между медицинской (психиатрической) и психологической моделью психического здоровья. Показано, что концепция «позитивного психического здоровья» подходит для оценки личностного здоровья. Важнейшие критерии личностного здоровья – способность выполнять социальные роли и зрелось личности. Исследование психического здоровья личности осуществляется с помощью психологических методик. ...

06 04 2024 16:29:29

МОРФОЛОГИЧЕСКИЕ ОСНОВЫ ФОРМИРОВАНИЯ ИММУНИТЕТА

МОРФОЛОГИЧЕСКИЕ ОСНОВЫ ФОРМИРОВАНИЯ ИММУНИТЕТА Статья в формате PDF 152 KB...

03 04 2024 1:17:15

ЯВЛЕНИЕ КРИОБИОГЕНЕЗА И САМООРГАНИЗАЦИЯ МЕРЗЛОТНЫХ ГЕОХИМИЧЕСКИХ ЛАНДШАФТОВ

ЯВЛЕНИЕ КРИОБИОГЕНЕЗА И САМООРГАНИЗАЦИЯ МЕРЗЛОТНЫХ  ГЕОХИМИЧЕСКИХ ЛАНДШАФТОВ Самоорганизация мерзлотных геохимических ландшафтов определяется явлением криобиогенеза и эффектами, которые он вызывает. Криобиогенез - это единство и взаимосвязь биогенных и криогенных процессов, формирующих мерзлотную экосистему, в которой геохимические процессы и миграция химических процессов тесно взаимосвязаны и взаимообусловлены энергией, веществом и информацией живого вещества и криогенеза. Главным условием возникновения и развития мерзлотных ландшафтов является непрерывный периодический (зима-лето) круговорот вещества во времени - криогенный и биогенный, проявляющийся в единстве, взаимодействии и соответствии друг с другом. Периодичность и взаимодействие этих главных противоположных процессов обеспечивают целостность и устойчивость системы. Периодичность явлений (зима-лето, оледенение - межледниковье) - важный признак мерзлотных ландшафтов. Этот признак обобщающий критерий и мера самоорганизации системы. В мерзлотном ландшафте биологический круговорот выполняет основную организующую роль. Он связывает воедино биогенный и криогенный циклы миграции - потоки вещества и энергии биогенеза и криогенеза, создают новую информационную систему, отличную от исходных составляющих. Криогенез и самоорганизация наиболее ярко проявляются в экосистемах на рудных провинциях, геохимически специализированных породах, нефтегазоносных и угленосных породах. Высокая самоорганизация мерзлотных ландшафтов (экосистем) Северной Азии с высокой биопродуктивностью и биоразнообразием с обилием животных (звери и рыбы) были главным фактором этногенеза. ...

02 04 2024 8:13:42

Производство цукатов из мякоти плодов и фруктов

Производство цукатов из мякоти плодов и фруктов Статья в формате PDF 103 KB...

28 03 2024 0:55:39

Оценка состояния эндоназального клиренса у детей

Оценка состояния эндоназального клиренса у детей Статья в формате PDF 107 KB...

23 03 2024 12:16:33

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::