ТЕРМОГАЗОДИНАМИЧЕСКАЯ МОДЕЛЬ РАЗРУШЕНИЯ УГОЛЬНЫХ ПЛАСТОВ > Полезные советы
Тысяча полезных мелочей    

ТЕРМОГАЗОДИНАМИЧЕСКАЯ МОДЕЛЬ РАЗРУШЕНИЯ УГОЛЬНЫХ ПЛАСТОВ

ТЕРМОГАЗОДИНАМИЧЕСКАЯ МОДЕЛЬ РАЗРУШЕНИЯ УГОЛЬНЫХ ПЛАСТОВ

Беспятов Г.А. Статья в формате PDF 114 KB

Вещество угля на молекулярном уровне состоит из двух взаимосвязанных частей:

  1. ядер (кристаллитов), обладающих структурой графита;
  2. боковой бахромы, состоящей из кислородосодержащих групп, играющих роль перемычек и связывающих первичные элементы между собой, а кристаллиты придают жесткость и укрепляют всю систему.

Несовершенная упаковка кристаллитов и образованных ими молекулярных слоев приводит к микропористости. Классификация пор зависит от возможного фазового состояния поглощенного в порах газа и включает в себя пять групп:

  1. микропоры;
  2. субмикропоры;
  3. мезопоры;
  4. макропоры;
  5. супермакропоры.

Находясь в микропорах, молекулы сорбата взаимодействуют между собой, и при их плотной упаковке в микропорах это молекулярное взаимодействие является взаимодействием отталкивания. При изменении силового состояния структурных элементов угольного вещества часть энергии молекулярного отталкивания молекул сорбата может передаваться угольному скелету, а при его разгрузке от внешних сил вызвать дополнительное растяжение и, тем самым, обеспечить локальное разрушение угольного вещества. Как показали исследования [1], энергия межмолекулярного отталкивания молекул сорбата, аккумулированная в микропорах, соизмерима с энергией разрыва вандерваальсовских и водородных связей между структурными элементами. При этом, взаимодействие отталкивания молекул сорбата и угольного вещества может не только усилить эффект разрушения угля, но и является начальной движущей силой этого процесса, обладая определенной упругостью.

Сорбированный в микропорах газ влияет не только на хаpaктеристики разрушения угля, но и на формирование в нем новых микропористых сорбционных структур. Эта закономерность прослеживается и для влажных углей. Хотя наличие влаги не изменяет количество самих микропористых структур по сравнению с сухими углями, однако, она снижает величину энергетического барьера формирования новой микропористой структуры.

Рассмотрим энергетический баланс микропористых сорбционных структур. Выделим элемент горной среды массива ωijk∈Ω. Будем считать, что в прострaнcтве Ω(x1,x2,x3) горного массива до начала горных работ t0, все элементы ωijk упорядочены и образуют прострaнcтвенную решетку (каркас) среды. При деформации массива (t>t0) элемент ωijk поглощает энергию упругой деформации ΔEijk, которая увеличивает внутреннюю энергию элемента ΔUijk. Разность (ΔEijk - ΔUijk) хаpaктеризует переход элемента среды ωijk с одного энергетического состояния в другое, отдавая избыток энергии в виде звуковой волны. Элементы ωijk, находящиеся в возбужденном состоянии, могут либо поглощать энергию, переходя на более высокий уровень либо, разрушаясь и отдавая энергию, возвращаться на более низкий энергетический уровень, т.е. имеет место бифуркация. Энергетический баланс обоих видов поглощения равен [2]

.     (1)

Учитывая определение интенсивности , где с - скорость звука в данной среде, найдем коэффициент поглощения энергии K:

.                  (2)

Если , то коэффициент поглощения K>0, а это означает затухание звуковой волны. При  K<0 и тогда интенсивность звукового поля растет, что означает образование ударной волны разрушения. Таким образом, сорбционные процессы инициируют упругие волновые поля в угольном массиве.

Упругие волны, интерферируя с преломленными ударными волнами, образуют интерференционные волны (ИВ). Последние затухают значительно быстрее, чем волны более низкого диапазона, так как коэффициент K пропорционален квадрату частоты. В то же время ИВ обладают высокой интенсивностью при относительно небольших амплитудах колебания. Затухающие ИВ превращаются в слабые ультразвуковые волны. Наличие влаги в порах угольного пласта при наличии ультразвуковых полей вызывает явление кавитации. Кавитационные микроскопические пузырьки, попадая в область разряжения, сильно расширяются за счет того, что давление содержащегося внутри газа превосходит суммарное действие поверхностного натяжения и давления жидкости.

Изменение радиуса кавитационной полости в поле ультразвуковой волны хорошо описывается уравнением Нолтинга-Непайреса [3], однако это уравнение допускает только численное решение.

Для нахождения кинематических хаpaктеристик захлопывающегося кавитационного пузырька рассмотрим наиболее простую задачу о смыкании стенок сферической полости в несжимаемой жидкости под действием постоянного давления газа [2]. Кинетическая энергия массы смыкающейся жидкости равна

.                      (3)

С учетом уравнения неразрывности

    ,                              (4)

получим

.                      (5)

Эта кинетическая энергия равна работе, совершенной силой давления P, по уменьшению объема полости от первоначального значения  до конечного ,т.е.

.                     (6)

Приравнивая формулы (5) и (6), получаем выражения для скорости движения стенок захлопывающейся полости

.                (7)

Из выражения (7) найдем полное время ∂t захлопывания пустой полости с начальным радиусом R0. Учитывая, что , и вводя замену переменных , найдем

,                   (8)

откуда

.             (9)

Расчеты по формуле (9) показывают, что время захлопывания пустой полости изменяется от .

Исследуем изменение давление внутри захлопывающегося пузырька. Давление в полости пузырька подчиняется политропическому закону

.                  (10)

Благодаря наличию в кавитационном пузырьке газа, скорость движения газа не будет стремиться к бесконечности, а радиус полости не сократится до нуля, как это вытекает из формулы (7) . Найдем минимальный радиус пузырька исходя из работы по сжатию газовой смеси:

.                              (11)

при γ = 1,31 интеграл (11) принимает вид

,                                  (12)

где минус обусловлен направлением действующих сил.

При полном сжатии полости до минимального радиуса вся энергия смыкающейся жидкости, определяемая формулой (6), идет на работу сжатия парогазовой смеси (12), а значит ( при ),

.                        (13)

Отношение  (его принято называть параметром газосодержания) составляет  [3]. Следовательно, радиус пузырька при его захлопывании уменьшается в десятки раз. В момент захлопывания пузырька развивается давление до  МПа, порождающее сферические, быстро затухающие в прострaнcтве ударные волны. Таким образом, происходит диспергирование угля до мелких фpaкций типа угольной муки. Наличие мелкодиспергированных участков в угольных пластах хаpaктерно для зон, опасных по внезапным выбросам угля и газа.

СПИСОК ЛИТЕРАТУРЫ

  1. Айруни А.Т. Бобин В.А. Модель макроструктуры угольного вещества. //Изв. ВУЗов, Горный журнал, №2,1987, с 1-7.
  2. Беспятов Г.А., Вылегжанин В.Н., Золотых С.С. Синергетика выбросоопасной горной среды. Новосибирск. Наука. Сибирская издательская фирма РАН.1996 г., с 190.
  3. Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. -М.: Наука, 1966 г.

Работа представлена на V научную конференцию «Успехи современного естествознания», 27-29 сентября 2004 г., РФ ОК «Дагомыс», г. Сочи



ОСОБЕННОСТИ СИСТЕМЫ ОБРАЗОВАНИЯ ГЕРМАНИИ

ОСОБЕННОСТИ СИСТЕМЫ ОБРАЗОВАНИЯ ГЕРМАНИИ Статья в формате PDF 301 KB...

21 04 2024 15:38:19

ОБ ИСХОДАХ ТЕРМОИНГАЛЯЦИОННОЙ ТРАВМЫ

ОБ ИСХОДАХ ТЕРМОИНГАЛЯЦИОННОЙ ТРАВМЫ Статья в формате PDF 90 KB...

20 04 2024 13:34:27

ОСОБЕННОСТИ РОССИЙСКОГО ПРЕДПРИНИМАТЕЛЬСТВА НА СОВРЕМЕННОМ ЭТАПЕ

ОСОБЕННОСТИ РОССИЙСКОГО ПРЕДПРИНИМАТЕЛЬСТВА НА СОВРЕМЕННОМ ЭТАПЕ В современной России, в период значительных для государства и его народа преобразований во всех сферах жизни общества наблюдаются изменения. За последние десять лет реформы породили новые виды деятельности, стили жизни, слои населения. В центре внимания исследований нового российского общества оказалось предпринимательство. Российских предпринимателей беспокоит негативное общественное мнение об их деятельности и отчуждения населения, низкий социальный статус в общественном сознании, периодически возникающие деструктивные конфликты с органами власти, отсутствие российских образцов рыночного поведения (традиций, нравов, обычаев), низкая культура предпринимательства. В итоге, феномен предпринимательства в России отличается своей специфичностью, природа которой лежит в особенностях становления данного класса. Стремясь к стандартам западного, образцового предпринимательства, российский бизнесмен не в силах игнорировать давно сложившиеся патриархальные традиции, арсенал накопившихся социальных ресурсов, амбициозность конкурентов, возможность самореализации и “переустройства мира на свой лад”. ...

19 04 2024 17:50:54

ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ СОЗДАНИЯ ИММОБИЛИЗОВАННЫХ СТРУКТУР НА БАЗЕ ПРОБИОТИКОВ

ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ СОЗДАНИЯ ИММОБИЛИЗОВАННЫХ СТРУКТУР НА БАЗЕ ПРОБИОТИКОВ Рассмотрена современная классификация и номенклатура пробиотических средств. Проведен анализ по составу и форме выпуска препаратов, представленных на российском фармацевтическом рынке. Даны рекомендации по оптимальному дозированию препаратов пробиотиков и повышению их устойчивости с помощью метода иммобилизации. ...

14 04 2024 15:30:48

ПОНКРАТОВ ПЕТР АНДРЕЕВИЧ

ПОНКРАТОВ ПЕТР АНДРЕЕВИЧ Статья в формате PDF 89 KB...

13 04 2024 16:34:40

ПОЛИТРАВМА В ДОРОЖНО-ТРАНСПОРТНЫХ ПРОИСШЕСТВИЯХ

ПОЛИТРАВМА В ДОРОЖНО-ТРАНСПОРТНЫХ ПРОИСШЕСТВИЯХ Статья в формате PDF 244 KB...

10 04 2024 18:41:19

ЛОМОВ ЮРИЙ МИХАЙЛОВИЧ

ЛОМОВ ЮРИЙ МИХАЙЛОВИЧ Статья в формате PDF 115 KB...

03 04 2024 14:30:50

МИОРЕЛАКСАЦИЯ В СИСТЕМЕ ПОДГОТОВКИ СПОРТСМЕНОВ

МИОРЕЛАКСАЦИЯ В СИСТЕМЕ ПОДГОТОВКИ СПОРТСМЕНОВ Статья в формате PDF 122 KB...

29 03 2024 13:36:27

АДСОРБЦИОННЫЕ МЕТОДЫ ОЧИСТКИ ГАЗОВ

АДСОРБЦИОННЫЕ МЕТОДЫ ОЧИСТКИ ГАЗОВ Статья в формате PDF 254 KB...

28 03 2024 8:54:18

КОНВЕКЦИЯ СМЕСЕЙ В МАГНИТНОМ ПОЛЕ

КОНВЕКЦИЯ СМЕСЕЙ В МАГНИТНОМ ПОЛЕ Получены уравнения конвекции и конвективной диффузии двухкомпонентных смесей в магнитном поле. Исследованы различные частные случаи. Решена задача о конвективном движении смеси вблизи вертикальной пластины, на поверхности которой происходит гетерогенная химическая реакция. Библиогр. 4 назв. ...

26 03 2024 23:58:50

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::