ПРИЛОЖЕНИЕ ТЕРМОДИНАМИКИ К ПРОГНОЗУ ТЕПЛОПРОВОДНОСТИ ЛЕГКОГО БЕТОНА > Полезные советы
Тысяча полезных мелочей    

ПРИЛОЖЕНИЕ ТЕРМОДИНАМИКИ К ПРОГНОЗУ ТЕПЛОПРОВОДНОСТИ ЛЕГКОГО БЕТОНА

ПРИЛОЖЕНИЕ ТЕРМОДИНАМИКИ К ПРОГНОЗУ ТЕПЛОПРОВОДНОСТИ ЛЕГКОГО БЕТОНА

Грызлов В.С. Основным механизмом теплообмена для капиллярно-пористых физических систем (типа легкого бетона) является контактная теплопроводность, которая осуществляется благодаря связанным между собой процессам: переходом тепла от частицы к частице через непосредственные контакты между ними и переходом тепла через разделяющую промежуточную среду. С термодинамической точки зрения теплообмен в легких бетонах представляет собой теплоперенос (поток тепла Q), а точнее перенос энтропии (S), под действием градиента температуры (Т), осуществляемый, в соответствии со вторым законом термодинамики, от мест с более высокой к местам с меньшей температурой. Термодинамическая идентичность коэффициента теплопроводности () и S позволила, на базе второго закона термодинамики, вывести общее уравнение для прогноза теплопроводности легкого бетона в условиях его эксплуатации. Установлено, что релаксация теплопроводности (τ) пропорциональна затуханию объемных деформаций бетона (Θ), вызванных температурным градиентом и уровнем напряжения (η). Экспериментальные исследования теплопроводности легкого бетона подтвердили затухающий хаpaктер изменения Δλ как функции времени (t) и деформативности. Статья в формате PDF 174 KB Второй закон термодинамики содержит сведения относительно возможности протекания того или иного процесса и его направленности, и для элементарного количества тепла, выражается как:

dQ = ÑТdS, или dS = dQ/ÑT.      (1)

Этим определяется методологическое значение его применения в бетоноведении. Кроме того, скорость роста энтропии может сама по себе рассматриваться как важнейшая хаpaктеристика для прогнозирования процессов в физической системе. На основе этой хаpaктеристики можно анализировать стационарные состояния систем и изменение их свойств.

Согласно второму закону термодинамики, у всякой неизолированной бетонной системы энтропия состоит из двух слагаемых:

dS = dtS + deS,       (2)

обусловленных изменением энтропии за счет внутренних dtS и внешних deS взаимодействий, причем dtS всегда ³ 0, тогда как 0 ³ deS ³ 0. Поэтому возрастание или убывание энтропии бетонной системы определяется в конечном итоге соотношением слагаемых в (2).

Если зафиксировать положение внешних тел, окружающих систему, то с течением времени любая физическая система придет в такое положение, когда её внутреннее состояние будет определяться только внешними параметрами и, не будет зависеть от начальных значений внутренних параметров. Это положение называется положением термодинамического равновесия, а время его установления - временем релаксации. В положении термодинамического равновесия все внутренние параметры системы одинаковы для всей системы, т.е. не зависят от координат и времени. С этой точки зрения процесс установления термодинамического равновесия можно рассматривать как процесс выравнивания внутренних параметров, который сопровождается соответствующими процессами переноса. Простейшим видом описания подобной связи является известный закон теплопроводности Фурье, устанавливающий зависимость между потоком теплоты и градиентом температур:

q = - l ÑT,       (3)

где - q - удельный тепловой поток; l -коэффициент теплопроводности.

Термодинамическая идентичность l и S в уравнениях (1 и 3) позволяют провести анализ теплопроводности бетона по аналогии с уравнением (2). Следуя этой аналогии теплопроводность бетона в эксплуатационных условиях может быть выражена:

l(t) = l0 - Dl0(t)      (4)

где l0 - теплопроводность бетона при завершении, в основном, процессов структурообразования; Dl0 - приращение, которое возникает в результате эксплуатационных воздействий за время t. Знак «минус» указывает, что релаксация теплопроводности связана с уравновешиванием конструктивных и деструктивных процессов, происходящих в бетоне, которые в целом приводят к уменьшению внутреннего напряжения и развитию необратимых деформаций.

 В термодинамическом аспекте можно предположить, что скорость изменения теплопроводности пропорциональна её отклонению от равновесного значения (l^). В этом случае:

d(l-l^)/dt = -(l-l^)/t   , (5)

где t - время релаксации.

Интегрируя и преобразуя, получаем:

l(t)=l0 - Dl0 е -(t)/t,    (6)

Уравнение (6) можно считать общим уравнением теплопроводности бетона. Графическая интерпретация этого уравнения представлена на рис. 1.

Решение уравнения (6) сводится к минимизации l0 и t. Очевидно, что l0 представляет собой структурно - технологический, внутренний, аспект теплопроводности и должно прогнозироваться на стадии проектирования состава бетона. Время релаксации t зависит не только от природы внутреннего параметра l0, но и от хаpaктера нарушения его равновесного значения, в первую очередь за счет деструкции.

Учитывая, что теплопроводность бетона связана с энергетическим состоянием его структуры ΔU и энтропией ΔS, можно предположить, что постоянная времени релаксации определяется соотношением (DU/DS). Анализируя (DU/DS) в рамках основных уравнений термодинамики для процесса деформирования тел, получаем выражение:

DU/DS = Т + Θ grad T      (7)

где Θ - объемные относительные деформации; Т- температура.

Рисунок 1. Графическая интерпретация общего уравнения теплопроводности бетона

Следовательно, релаксация теплопроводности, пропорциональна температуре эксплуатации и затуханию объёмных деформаций бетона, вызванных уровнем напряжения.

Экспериментальные исследования теплопроводности бетона (рис.2,3) подтвердили затухающий хаpaктер изменения Dl0 как функции времени и деформативности. Анализ этих результатов позволил получить уравнение изменения теплопроводности бетона во времени при фиксированном уровне напряжения:

l(t,h) =l0{1+Аtt-1)+mh(1+0,93h) (1 -2 m)[1-mh(1+0,93h)(1-2m)]}         (8)

где m - коэффициент Пуассона; h - уровни напряжения; t - время; А,В, - эмпирические коэффициенты, отражающие вид и качественные хаpaктеристики бетона.

Рисунок 2. Изменение относительных приращений теплопроводности шлакобетонов во времени.

Рисунок 3. Влияние объёмных деформаций на приращения теплопроводности шлакобетонов.

С позиции термокинетической теории деформирования бетона и баланса энтропии, процесс релаксации теплопроводности также связан с увеличением энтропии.

Рисунок 4. Схема роста энтропии бетона во времени при его деформировании

(S* - энтропийный критерий разрушения, t1 и t2 - границы инкубационной стадии).

Однако, в случае эксплуатации ограждающих конструкций из легкого бетона, кинетика этого процесса в основном заканчивается на «инкубационной» стадии (рис.4), когда в деформируемом бетоне зарождаются и накапливаются различного рода дефекты и повреждения. Этот процесс носит статистический хаpaктер и в каждый момент времени деформирования, заданным условиям напряжения, соответствует определенная степень повреждаемости структуры данного бетона. Приращение энтропии за счет внешнего взаимодействия затухает и в целом оно не достигает уровня «энтропийного критерия разрушения», что соответствует нижнему уровню границ микротрещинообразования легкого бетона.



БИОХИМИЯ КРОВИ (учебное пособие)

БИОХИМИЯ КРОВИ (учебное пособие) Статья в формате PDF 106 KB...

19 01 2023 3:50:40

ОТНОШЕНИЕ ЖАБРОНОГОГО РАЧКА СТРЕПТОЦЕФАЛЮСА (STREPTOCEPHALUS TORVICORNIS) К ОСНОВНЫМ ФАКТОРАМ СРЕДЫ

ОТНОШЕНИЕ ЖАБРОНОГОГО РАЧКА СТРЕПТОЦЕФАЛЮСА (STREPTOCEPHALUS TORVICORNIS) К ОСНОВНЫМ ФАКТОРАМ СРЕДЫ В статье описаны эксперименты по изучению влияния основных факторов среды на жизнедеятельность жабронога стрептоцефалюса. Установлено, что наиболее оптимальная температура воды для роста и развития рачка и созревания его яиц составляет 15 - 25°С. Этот вид является исключительно пресноводным и чувствительно реагирует даже на небольшое повышение солености (в пределах 1 - 2%о). Однако жаброног способен выдерживать значительный дефицит кислорода в воде (2,5 - 2 мг/л). ...

18 01 2023 19:27:10

ПСИХОЛОГИЯ ВЫЖИВАНИЯ ЛИЧНОСТИ

ПСИХОЛОГИЯ ВЫЖИВАНИЯ ЛИЧНОСТИ Новая реальность предъявляет к человеку повышенные требования. Выживание человека в сложных условиях – это сохранение его целостности (как биологического индивида, личности, субъекта деятельности и индивидуальности). Защищенность личности – условие психологического выживания человека в мире. Неосознаваемые психологические защиты снижают свободу действий человека. В статье рассматриваются психологические аспекты адаптации человека. Для сохранения устойчивости личности необходимы психологические константы – мировоззрение, жизненная позиция, смысл жизни, профессионализм. ...

09 01 2023 9:23:14

СОЛОГУБ ТАМАРА ВАСИЛЬЕВНА

Статья в формате PDF 258 KB...

06 01 2023 0:24:31

ОЦЕНКА СОСТОЯНИЯ СЕВЕРНЫХ ЭКОСИСТЕМ ПРИ РАЗРАБОТКЕ МЕРОПРИЯТИЙ ПО СНИЖЕНИЮ НЕГАТИВНЫХ ПОСЛЕДСТВИЙ ТЕХНОГЕННОГО ВОЗДЕЙСТВИЯ

ОЦЕНКА СОСТОЯНИЯ СЕВЕРНЫХ ЭКОСИСТЕМ ПРИ РАЗРАБОТКЕ МЕРОПРИЯТИЙ ПО СНИЖЕНИЮ НЕГАТИВНЫХ ПОСЛЕДСТВИЙ ТЕХНОГЕННОГО ВОЗДЕЙСТВИЯ В данной работе приводятся результаты экологических исследований по состояния северных экосистем, с целью разработки возможных мероприятий по снижению негативных воздействий на окружающую среду при горно-добычных работах открытых карьерным способом. Выявлены закономерности приуроченности накопления тяжелых металлов на определенных типах почв. ...

03 01 2023 20:22:15

К ПРОБЛЕМЕ СРАВНЕНИЯ ПРОИЗВОДСТВЕННЫХ МОЩНОСТЕЙ

К ПРОБЛЕМЕ СРАВНЕНИЯ ПРОИЗВОДСТВЕННЫХ МОЩНОСТЕЙ Статья в формате PDF 107 KB...

29 12 2022 19:49:24

ХЕМОКИНЕТИКОТРОПНЫЕ СВОЙСТВА АТФ

ХЕМОКИНЕТИКОТРОПНЫЕ СВОЙСТВА АТФ Статья в формате PDF 88 KB...

26 12 2022 16:19:39

ИССЛЕДОВАНИЕ УСЛОВИЙ ПРИМЕНЕНИЯ РЯДА ОРГАНИЧЕСКИХ РАСТВОРИТЕЛЕЙ ДЛЯ ОЧИСТКИ ИНУЛИНАЗ ИЗ РАЗЛИЧНЫХ ИСТОЧНИКОВ

ИССЛЕДОВАНИЕ УСЛОВИЙ ПРИМЕНЕНИЯ РЯДА ОРГАНИЧЕСКИХ РАСТВОРИТЕЛЕЙ ДЛЯ ОЧИСТКИ ИНУЛИНАЗ ИЗ РАЗЛИЧНЫХ ИСТОЧНИКОВ Разработана методика получения высокоочищенных препаратов инулиназы из продуцентов Aspergillus awamori и Saccharomyces cerevisiae. Исследовано влияние различных органических растворителей на полноту осаждения данного фермента. ...

25 12 2022 0:47:28

СУБЪЕКТИВНЫЕ БАРЬЕРЫ ОБЩЕНИЯ У ПОДРОСТКОВ

СУБЪЕКТИВНЫЕ БАРЬЕРЫ ОБЩЕНИЯ У ПОДРОСТКОВ Статья в формате PDF 114 KB...

20 12 2022 16:26:30

ВИДЫ ОПЕРАЦИЙ НА СЕЛЕЗЕНКЕ ПРИ ЕЕ ТРАВМЕ

ВИДЫ ОПЕРАЦИЙ НА СЕЛЕЗЕНКЕ ПРИ ЕЕ ТРАВМЕ Представлен обзор литературы, посвященный хирургическому лечению повреждений селезенки. Особое внимание отводится хирургическому лечению, направленному на сохранение этого органа с помощью лазерной техники. Показано, что пpaктика использования операций, направленных на сохранение селезенки при ее травме прошла несколько этапов. Применение таких хирургических вмешательств во многом зависит от технического оснащения операционного блока. ...

19 12 2022 7:15:10

ПРОБЛЕМЫ ОРГАНИЗАЦИИ КОНТРОЛЯ И ОЦЕНКИ БЕЗОПАСНОСТИ НАНОМАТЕРИАЛОВ И НАНОТЕХНОЛОГИЙ В ГИГИЕНЕ ОКРУЖАЮЩЕЙ СРЕДЫ

ПРОБЛЕМЫ ОРГАНИЗАЦИИ КОНТРОЛЯ И ОЦЕНКИ БЕЗОПАСНОСТИ НАНОМАТЕРИАЛОВ И НАНОТЕХНОЛОГИЙ В ГИГИЕНЕ ОКРУЖАЮЩЕЙ СРЕДЫ Дана оценка современным физико-химическим методам исследования для контроля, сертификации и гигиенической оценке безопасности нономатариалов. Разработаны методики определения ряда тяжелых металлов в биологических средах, которые утверждены МЗ РФ и Роспотребнадзором РФ и могут быть использованы для оценки безопасности наноматериалов. ...

18 12 2022 5:21:18

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::