ИЗУЧЕНИЕ МЕХАНИЗМА ПЕРЕДАЧИ ИНФОРМАЦИИ В НЕРВНО-МЫШЕЧНОМ СИНАПСЕ
RT [K] Н
VK = ----- ln -------, (1)
F [Na] В
где VK - равновесный потенциал для ионов К+, КН и КВ - активность калия снаружи и внутри волокна, R - газовая постоянная, Т - абсолютная температура и F - постоянная Фарадея. По данным различных авторов, эта величина соответствует 70-75 мВ. Для объяснения реверсии мембранного потенциала (МП) во время развития импульса предполагается, что на гребне спайка мембрана избирательно проницаема для ионов Nа+. Разность потенциалов при этом выражается формулой Нернста для натриевого электрода:
RT [Na] Н
VNa = ----- ln -------. (2)
F [Na] В
Снижение потенциала покоя (ПП) до определенной величины ведет к проницаемости мембраны к ионам натрия, которые входя в клетку вызывают дальнейшее снижение ПП. Повышенная проницаемость мембраны к ионам Nа+ сменяется повышением ее проницаемости к ионам К+. При этом последние выходят из клетки и в результате чего происходит восстановление ПП клетки. Эти изменения разности потенциалов и создают электрический импульс, распространяющийся по нервному волокну. Эксперимент с двумя электродами, введенными в одиночное волокно аксона кальмара, позволил вплотную подойти к вопросу о природе энергии, необходимой для изменения знака потенциала на мембране. Один электрод служит для пропускания тока, другой - для измерения разности потенциалов на мембране. Показано, что если ток течет через мембрану внутрь волокна, то разность потенциалов увеличивается, и возбуждения нет. Ток, направленный наружу, также не вызывает возбуждения. Однако, генератор сpaбатывает каждый раз, когда напряжение на мембране уменьшается ниже определенной величины, которую принято называть порогом возбуждения. Нервный импульс возникает только в том случае, если вызванное возбуждение любым способом изменяет напряжение мембраны за пороговую величину, которая обычно равна 10-15 мВ. Суммируя вышесказанное можно предположить, что передача электрических сигналов в нервных сетях основан на изменении МП в результате прохождения относительно небольшого числа ионов через мембранные каналы. В результате открывания и закрывания натриевых каналов нервный импульс распространяется вдоль нервного волокна, пока не достигнет его окончания - места контакта с мышечной клеткой или, как принято называть, «концевой пластинкой». В концевой пластинке под действием нервного импульса открываются потенциал-зависимые кальциевые каналы, и ионы Са2+ входят в нервное окончание, в результате чего нервная клетка освобождает медиатор - ацетилхолин (АХ).
Применение микроэлектродной техники отведения спонтанных биопотенциалов концевой пластинки позволило определить пороговую чувствительность синаптической области мышечной мембраны путем нанесения незначительного количества АХ. Показано, что АХ в количестве 108-109 молекул уже вызывает деполяризацию мышечной мембраны в области наружной поверхности синапса. Сама же мембрана является непроницаемой для АХ. При введении АХ внутрь мышечных волокон в районе концевой пластинки, никаких электрических изменений не наблюдалось.
Многочисленными работами показана необходимость притока ионов Са2+ в окончание аксона для синаптической передачи. Показано, что если во внеклеточной среде кальций отсутствует, АХ не освобождается и передача сигнала не происходит и, во-вторых, если искусственно ввести Са2+ в наружную среду, омывающий нервно-мышечный препарат при помощи микроаппликации, выход нейромедиатора происходит спонтанно.
Во множестве животных клеток ион Са2+ служит универсальным посредником, передающим внутриклеточным механизмам сигналы, поступившие к клетке извне. Для регуляции уровня кальция в клетке имеются такие механизмы, которые управляют движением ионов Са2+ через клеточную плазматическую мембрану и саркоплазматического ретикулума, являющиеся своеобразными емкостями для хранения запасов кальция. Чувствительность клетки к очень небольшим изменениям концентрации Са2+ обусловлена тем, что его нормальная внутриклеточная концентрация очень мала (не более 10-7 М), в то время как вне клетки его концентрация выше 10-3 М. Благодаря способности кальция передавать внутриклеточным биохимическим системам сигналы, которые в форме электрических импульсов или фармакологических соединений поступают извне ему отдана роль «вторичного мессенджера», обладающего способностью прочно и с высокой специфичностью связываться со своим белком-мишенью. В результате этого связывания конформация молекулы белка-мишени изменяется так, что он переходит из неактивного состояния в активное или наоборот. Входящий кальциевый ток оказывает клетке значительное воздействие. При таком концентрационном градиенте, когда снаружи кальция больше чем внутри через открытые каналы внутрь аксона переходит достаточно ионов Са2+. Это необходимо для того, чтобы концентрация ионов Са2+ внутри окончания увеличилась на 1-2 порядка, в результате чего клетка начнет выделять нейромедиатор. Концентрация свободных ионов Са2+ возрастает лишь на короткое время, так как Са-связывающие белки и митохондрии быстро поглощают кальциевые ионы перешедшие в нервное окончание. Согласно описанной схеме, в процессе передачи информации от клеточной поверхности внутрь клетки, кальций действует как простой переключатель, который создает только два состояния системы: «включено» и «выключено», что особенно проявляется при секреции медиатора. Лауреат Нобелевской премии - сэр Бернард Катц с сотрудниками обнаружили, что медиатор выделяется из нервных окончаний порциями (квантами). Было отмечено, что каждая освободившаяся порция вызывает на мембране мышечной клетки слабое изменение потенциала в сторону деполяризации, часто называемыми миниатюрными потенциалами концевой пластинки (МПКП). Выяснено, что нейромедиатор хранится в секреторных пузырьках в плотноупакованном виде, находящихся внутри нервного окончания около пресинаптической мембраны. В нашей лаборатории установлено, что МПКП возникают только под воздействием целой порции медиатора и эта порция должна быть сильно сконцентрирована и выброшена очень близко к рецепторам в случайные моменты времени по типу «все или ничего». Известно, что один квант медиатора - АХ открывает около 1000 каналов ионной проводимости. Изучение длинных последовательностей до нескольких тысяч МПКП показало, что распределение интервалов t между импульсами вокруг среднего значения tх симметрично, а частота, с которой встречаются интервалы t, следуют простому экспоненциальному закону, хаpaктерному для случайного процесса.
t
Рt = е --- (3)
tх
По нашим данным амплитуда МПКП имеет величину порядка 1 мВ и заметно колeблется от 0,1 до 4 мВ. Этот разброс связан, прежде всего с тем, что места возникновения МПКП находятся на разном расстоянии от регистрирующего электрода. МПКП регистрируются внеклеточным микроэлектродом от наружной поверхности мышечных мембран, от различных, но строго локальных участков синапса, что свидетельствует о выделении АХ не диффузно, а в определенных активных точках. При изучении возникновения постсинаптического потенциала концевой пластинки (ПКП) многие исследователи пришли к выводу, что ПКП возникает вследствие резкого увеличения частоты МПКП и, что между частотой и силой поляризующего тока имеется линейная зависимость. Деполяризация пресинаптических окончаний на 60 мВ увеличивает частоту в 104 раз, что вызывает появление ПКП. В нормальных условиях такой ПКП состоит из более чем из сотни наложенных друг на друга МПКП. Если предположить, что ПКП состоит из спонтанно возникающих МПКП, то их число в одиночном ПКП должно испытывать отклонения от среднего значения, которые описываются формулой Пуассона. Допустив, что среднее число МПКП в ПКП равно m, тогда вероятность Рх наблюдать ПКП, содержащей х МПКП, будет
mx
Рх = ------ e-m, (4)
X!
где х - порция и m - среднее число порций, освобождаемых при одном импульсе. В виду того, что вероятность отклонений х от m для больших значений мала, возникла необходимость снизить квантовый состав ПКП за счет снижения концентрации Са2+ и повышения концентрации Mg2+. Однако, в последние годы появилось много убедительных данных, в которых показано, что временное распределение интервалов не подчиняется закону Пуассона. Обнаружено существование низко- и высокоамплитудных МПКП, которые возникали в той же самой концевой пластинке. Анализ встречаемости обоих видов МПКП в односекундные и 100миллисекундные непрерывающиеся интервалы показал, что имеются существенные отклонения от пуассоновского распределения, тем большие, чем меньше диаметр волокна и частота МПКП. Этот статистический подход представляет интерес, поскольку позволяет подтвердить предположение о квантовом хаpaктере освобождения медиатора.
Статья в формате PDF
132 KB...
23 09 2023 0:26:40
Статья в формате PDF
288 KB...
22 09 2023 5:23:35
Статья в формате PDF
110 KB...
21 09 2023 10:42:52
Сравнительным исследованием костного мозга больных, перенесших
острую и хроническую кровопотери, установлено, что после острой кровопотери общее количество миелокариоцитов, количества эритрокариоцитов и гранулоцитов были существенно меньше аналогичных показателей морфологического состава костного мозга после хронической кровопотери. Уменьшение содержания гранулоцитарных миелокариоцитов после острой кровопотери было обусловлено резким снижением количества их созревающих форм, чего не наблюдалось после хронической кровопотери. При этом содержание в костном мозге зрелых форм гранулоцитов было одинаковым после обоих видов кровопотери. Уменьшение содержания в костном мозге после острой кровопотери созревающих форм гранулоцитов сопровождалось значительным уменьшением индекса созревания нейтрофилов, что свидетельствует об ускорении их созревания и выброса в кровеносное русло. Для хронической кровопотери была хаpaктерна эритроидная гиперплазия костного мозга.
...
20 09 2023 2:22:34
Статья в формате PDF
120 KB...
19 09 2023 22:28:54
Проведено исследование экологических ниш двух видов бурых лягушек при совместном обитании на водоемах. В период скопления на кладках у R. temporaria идет отбор крупных особей, ускоренно развивающихся за счет питания мелкими собратьями. R. arvalis – скоплений не образуют и являются типичными детритофагами. Успех роста и развития первого вида зависит от облигатного каинизма и нeкpoфагии. При отсутствии такой возможности питание схоже с питанием личинок R. arvalis. Выявлены различия в поведении личинок при появлении опасности. Крупные личинки R. temporaria, уходят на глубину, мелкие - мимикрируют под цвет грунта и становятся малоподвижными. Личинки R. arvalis не имеют маскировочной окраски, при возникновении опасности зарываются в грунт или прячутся в укрытиях.
...
18 09 2023 5:23:32
Статья в формате PDF
121 KB...
17 09 2023 11:36:31
Статья в формате PDF
152 KB...
15 09 2023 3:31:45
На 30 беспородных крысах-самцах моделировалась хроническая алкогольная интоксикация и однократный приём алкоголя. Исследовалась слизистая оболочка полости носа крысы, которая окрашивалась толуидиновым-синим. Выявлено, что тучные клетки, как регуляторы местного гомеостаза реагируют на однократный и многократный приём алкоголя изменением количества клеток, величины профильного поля, коэффициента дегрануляции. Между этими изменениями выявлена коррелятивная связь.
...
14 09 2023 3:45:23
12 09 2023 20:39:45
11 09 2023 7:32:49
Статья в формате PDF
266 KB...
10 09 2023 19:12:23
Статья в формате PDF
121 KB...
09 09 2023 22:58:17
Статья в формате PDF
358 KB...
08 09 2023 21:41:56
Статья в формате PDF
314 KB...
07 09 2023 16:18:38
Проведена разработка метода междисциплинарного экологического проектирования на основе профессионально-интегрированной интенсивно-коммуникативной технологии обучения. Метод позволяет интегрировать знания студентов технических специальностей из разных наук вокруг решения одной проблемы экологического содержания. Метод представляет собой процесс творчества студентов, решающий нестандартные научно-учебные задачи. Центральным понятием междисциплинарного экологического проектирования является проект. Ведущие хаpaктеристики проекта новизна, оригинальность и возможность последующего воплощения в пpaктику. Выполнение проектов требует от студентов проявления самостоятельности, нестандартных подходов к решению насущных экологических проблем, что соответствует современным тенденциям реформирования высшего профессионального образования. В целом междисциплинарное экологическое проектирование ориентировано на развитие самостоятельности студентов, их интеллектуальной, познавательной и творческой активности, позволяет выстроить учебный процесс в соответствии с профессионально-интегрированной интенсивно-коммуникативной технологией, способствует развитию экологического сознания и формированию экологической компетенции студентов технических специальностей.
...
05 09 2023 21:56:38
Статья в формате PDF
284 KB...
04 09 2023 19:20:18
Статья в формате PDF
113 KB...
03 09 2023 0:11:15
Статья в формате PDF
280 KB...
02 09 2023 19:45:45
В работе изучено состояние клинико-иммунологического статуса при хронических и инфекционно-аллергических отитах у собак. Дана сравнительная оценка сочетанного применения меатотимпaнaльной новокаиновой блокады с лекарственными препаратами при лечении отитов у собак с другими известными методами и изучено их влияние на клеточные и гумopaльные звенья иммунной системы.
...
01 09 2023 4:58:10
31 08 2023 0:27:31
Статья в формате PDF
332 KB...
30 08 2023 7:23:57
Статья в формате PDF
137 KB...
28 08 2023 23:18:36
Статья в формате PDF
110 KB...
26 08 2023 5:22:53
Статья в формате PDF 251 KB...
24 08 2023 7:44:45
Статья в формате PDF
139 KB...
22 08 2023 21:17:24
Статья в формате PDF
245 KB...
21 08 2023 7:54:25
Статья в формате PDF
106 KB...
20 08 2023 21:12:55
Статья в формате PDF
311 KB...
19 08 2023 2:20:11
Статья в формате PDF
393 KB...
18 08 2023 20:28:32
Статья в формате PDF
106 KB...
17 08 2023 22:16:10
Статья в формате PDF
137 KB...
16 08 2023 10:45:52
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::