ПАРАЛЛЕЛЬНЫЙ АЛГОРИТМ (2,1)-МЕТОДА ПЕРЕМЕННОГО ШАГА > Полезные советы
Тысяча полезных мелочей    

ПАРАЛЛЕЛЬНЫЙ АЛГОРИТМ (2,1)-МЕТОДА ПЕРЕМЕННОГО ШАГА

ПАРАЛЛЕЛЬНЫЙ АЛГОРИТМ (2,1)-МЕТОДА ПЕРЕМЕННОГО ШАГА

Ващенко Г.В. Статья в формате PDF 505 KB

Предложен параллельный алгоритм переменного шага на основе (2,1)-метода. В предлагаемом параллельном алгоритме изменение величины шага построено на основе контроля точности численной схемы.

В настоящее время одним из основных параметром, хаpaктеризующих эффективность использования вычислительной техники в науке и технологии, являются математические модели и численные методы, применяемые при создании программ для реализации исследований и расчетов по этим моделям. Моделирование процессов во многие важных приложениях приводит к необходимости численного решения задачи Коши для умеренно жестких систем обыкновенных дифференциальных уравнений [1, 2].

Рассматривается задача Коши для автономной системы обыкновенных дифференциаль ных уравнений первого порядка

 (1)

где y:[t0, tk] → RN, f:[t0, tk]×RN → RN, [t0, tk] - отрезок интегрирования. Для численного решения (1) применим схему (2,1)-метода

 (2)

 

где коэффициенты a, p1 и p2 определяют свойства точности и устойчивости схемы (2), h - шаг интегрирования, fn′ = ∂f(yn)/∂y - матрица Якоби системы (1). Будем считать, что (1) имеет единственное решение. Пусть известны условия для контроля точности вычислений, именно p1 + p2 = 1 и ap1 + 2ap2 = 0,5, . Изменение величины шага основано на оценке локальной ошибки δn. Учитывая соотношение, , новый шаг hnew определяем по формуле hnew = qh, где значение q находится из уравнения q2||δn|| = ε. Если q < 1, то осуществляем повторное вычисление решения с шагом h = hnew. При q > 1 выполняем следующий шаг интегрирования с шагом hnew. Введем функции Par_LU_Decompos(), Par_LU_Solution(), реализующие декомпозицию матрицы Dn и нахождение векторов , . Для контроля точности численной схемы (2) введем функцию accur_control (), для выполнения которой назначим процессор proc(1). Параллельный алгоритм вычисления приближенного решения y(n+1) переменного шага формулируем следующим образом.

Алгоритм. Пусть для численного решения системы (1) используется (2.1)-метод с контролем точности, и известно решение y(n) в точке tn с шагом hn. Тогда для получения значения y(n+1) в точке tn+1 справедлив параллельный алгоритм, в котором на каждом процессоре proc(j) формируется своя j-я часть вектора решения.

Шаг 1. В каждом proc(j), 1 ≤ j ≤ p; (j-1) s + 1 ≤ sj ≤ j⋅s: выполнить recv(, h; 1,..., p), вычислить  и матрицу Якоби Jj, 1 ≤ j ≤ p.

Шаг 2. Сформировать матрицу .

Шаг 3. Разложить матрицу Dn, Dn = Par_LU_Decompos().

Шаг 4. Вычислить ,

.

Шаг 5. Вычислить ,

Шаг 6. В каждом proc(j), 1 ≤ j ≤ p;

(j-1)⋅s +1 ≤ sj ≤ j⋅s:

определить

,

и выполнить .

Шаг 7. В proc(1): выполнить accur_control () и, если необходимо, вывести вектор y(n+1).

Шаг 8. В каждом proc(j), 1 ≤ j » p;

(j-1)⋅s +1 ≤ sj ≤ j⋅s:

вычислить

и выполнить .

Шаг 9. Выполнить следующий шаг интегрирования.

Как показывают теоретические и пpaктические расчеты, выполняемые на кластере ИВМ СО РАН [3] показывают, что основные вычислительные затраты связаны с реализацией
LU-факторизации и последующем решении систем для определения шаговых коэффициентов.

Работа выполнена при финансовой поддержке РФФИ проект №11-01-00106.

Список литературы

  1. Новиков Е.А. Явные методы для жестких систем. - Новосибирск: Наука, 1997.
  2. Хайрер Э., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Жесткие и дифференциально-алгебраические задачи. - М.: Мир, 1999.
  3. Исаев С.В., Малышев А.В., Шайдуров В.В. Развитие Красноярского центра параллельных вычислений // Вычислительные технологии. - 2006. - №11. - С. 28-33.


ИГРОВЫЕ МЕТОДЫ ПРЕПОДАВАНИЯ В УНИВЕРСИТЕТАХ

Статья в формате PDF 108 KB...

16 04 2024 18:38:51

ВЗАИМОДЕЙСТВИЕ 1,3-ДЕГИДРОАДАМАНТАНА С ДИМЕТИЛТРИСУЛЬФИДОМ

ВЗАИМОДЕЙСТВИЕ 1,3-ДЕГИДРОАДАМАНТАНА С ДИМЕТИЛТРИСУЛЬФИДОМ В статье рассмотрены реакции 1,3-дегидроадамантана, относящегося к напряженным мостиковым [3.3.1]пропелланам, с диметилтрисульфидом. Установлено, что при взаимодействии образуются 1,3-бис(метилтио)адамантан, 1-(метилдитио)-3-(метилтио)адамантан и 1,3-бис(метилдитио)адамантан в соотношении 1:4,5:1. Структуры полученных соединений подтверждены методами хромато-масс-спектометрии и ЯМР1Н-спектроскопии. Выход целевого 1-(метилдитио)-3-(метилтио)адамантана составляет 50 %. Было предположено, что реакция протекает по радикальному механизму. Приведено описание эксперимента. ...

15 04 2024 5:23:26

ПРЕОДОЛЕНИЕ ФОРМАЛИЗМА В ЗНАНИЯХ СТУДЕНТОВ

ПРЕОДОЛЕНИЕ ФОРМАЛИЗМА В ЗНАНИЯХ СТУДЕНТОВ Статья в формате PDF 262 KB...

13 04 2024 23:27:16

ТУБЕРКУЛЕЗНОЕ ПОРАЖЕНИЕ ПОЗВОНОЧНИКА У ДЕТЕЙ

ТУБЕРКУЛЕЗНОЕ ПОРАЖЕНИЕ ПОЗВОНОЧНИКА У ДЕТЕЙ Статья в формате PDF 120 KB...

12 04 2024 17:35:39

ВЛИЯНИЕ ШУМА НА ОРГАНИЗМ ЧЕЛОВЕКА

ВЛИЯНИЕ ШУМА НА ОРГАНИЗМ ЧЕЛОВЕКА Статья в формате PDF 144 KB...

07 04 2024 11:22:26

ЧАЙКОВСКИЙ ВИТОЛЬД КАЗИМИРОВИЧ

ЧАЙКОВСКИЙ ВИТОЛЬД КАЗИМИРОВИЧ Статья в формате PDF 327 KB...

03 04 2024 16:14:10

ТЕОРИЯ СИСТЕМ И СИСТЕМНЫЙ АНАЛИЗ

ТЕОРИЯ СИСТЕМ И СИСТЕМНЫЙ АНАЛИЗ Статья в формате PDF 125 KB...

26 03 2024 0:28:10

ЭКОЛОГИЧЕСКИЕ И АГРОЛАНДШАФТНЫЕ ОСОБЕННОСТИ ЗОНАЛЬНЫХ СИСТЕМ ЗЕМЛЕДЕЛИЯ В УСЛОВИЯХ КАЗАХСТАНА

ЭКОЛОГИЧЕСКИЕ И АГРОЛАНДШАФТНЫЕ ОСОБЕННОСТИ ЗОНАЛЬНЫХ СИСТЕМ ЗЕМЛЕДЕЛИЯ В УСЛОВИЯХ КАЗАХСТАНА Приведены результаты научных исследований сохранения и улучшения экологического состояния агроландшафтов Казахстана. Проведены экспериментальные работы с учетом дифференциации зональных систем земледелия. Исследования показали, что оценка в эрозионных агроландшафтах адаптивности основной обработки богарных светло-каштановых почв на уровне мезо – и микроландшафтных условий, вспашка более эффективна в северных и восточных экспозиций склонов, где плотность пахотного слоя была в среднем за вегетацию зерновых культур в основном на 0,02–0,04 г/см3 меньше по сравнению с плоскорезной обработкой. На склонах южной и западной экспозиций наоборот плоскорезная обработка способствовала снижению уплотненности почвы, на 0,03–0,05 г/см3 и повышению ее противоэрозионной устойчивости в 1,2–1,5 раза. На склонах северной и восточной экспозиции вспашка обеспечивает более эффективную борьбу с сорняками, а плоскорезная – на южных и западных склонах более высокое и равномерное накопление снега и рациональное использование влаги. Важнейшим звеном улучшения экологии почв является оптимизация севооборотов. В статье предлагается построить севооборот по количеству оставляемого в почве органического вещества, каждым предшественником. Для совершенствования севооборотов рекомендуется сидерация, уплотненные посевы, размещение многолетних и однолетних трав, применения органических удобрений и др. ...

22 03 2024 17:20:46

ОБ ОДНОЙ ВЕКТОРНОЙ ЗАДАЧЕ ИНДУСТРИАЛЬНО-ОРГАНИЗАЦИОННОЙ ПСИХОЛОГИИ НА ГИПЕРГРАФЕ

ОБ ОДНОЙ ВЕКТОРНОЙ ЗАДАЧЕ ИНДУСТРИАЛЬНО-ОРГАНИЗАЦИОННОЙ ПСИХОЛОГИИ НА ГИПЕРГРАФЕ Настоящая работа посвящена экономико-математическому моделированию процесса кадрового обеспечения организации с учетом основных положений и методов индустриально-организационной психологии [1]. ...

17 03 2024 10:39:16

ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА СЕМЯН МАСЛИЧНОГО ЛЬНА

ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА СЕМЯН МАСЛИЧНОГО ЛЬНА Статья в формате PDF 138 KB...

15 03 2024 1:19:48

РАЗВИТИЕ МАРКЕТИНГА В КАЗАХСТАНЕ

РАЗВИТИЕ МАРКЕТИНГА В КАЗАХСТАНЕ Статья в формате PDF 124 KB...

12 03 2024 17:52:39

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::