ПРОВЕДЕНИЕ МНОГОМЕРНОЙ КЛАССИФИКАЦИИ ВУЗОВ ЧИТИНСКОЙ ОБЛАСТИ И АБАО НА ОСНОВЕ КЛАСТЕРНОГО АНАЛИЗА > Полезные советы
Тысяча полезных мелочей    

ПРОВЕДЕНИЕ МНОГОМЕРНОЙ КЛАССИФИКАЦИИ ВУЗОВ ЧИТИНСКОЙ ОБЛАСТИ И АБАО НА ОСНОВЕ КЛАСТЕРНОГО АНАЛИЗА

ПРОВЕДЕНИЕ МНОГОМЕРНОЙ КЛАССИФИКАЦИИ ВУЗОВ ЧИТИНСКОЙ ОБЛАСТИ И АБАО НА ОСНОВЕ КЛАСТЕРНОГО АНАЛИЗА

Сайфутдинова А.С. Статья в формате PDF 134 KB

Рассмотрим следующую задачу. Требуется оценить уровень образования в различных Вузах. Так как уровень образования - это понятие достаточно абстpaктное, то получить его точную количественную хаpaктеристику пpaктически невозможно. Однако его можно косвенно оценить по ряду экономических показателей, хаpaктеризующих стоимость обучения, квалификацию преподавательского персонала, материально-техническую базу, имидж Вуза и т.д. Очень часто далее строят некоторый интегральный показатель, объединяющий в себе все частные показатели, и на его основе ранжируют объекты (в нашем случае Вузы) по уровню образования. Однако такой подход имеет два основных недостатка:

  1. Возможность компенсации низких значений одних показателей высокими значениями других. К примеру, если интегральный показатель равен простой сумме показателей, то Вуз, у которого стоимость обучения оценивается на 5, а качество подготовки на 3 будет эквивалентен Вузу, у которого стоимость обучения оценивается на 3, а качество обучения на 5. Это очевидно является абсурдным.
  2. Возможность наличия сильной корреляционной зависимости между показателями, что искажает получаемые результаты.

Таким образом, прямое измерение уровня образования с помощью интегрального показателя представляется нецелесообразным. Альтернативу этому способу составляет кластерный анализ, являющийся одним из способов многомерной классификации, который не измеряет уровень образования, но позволяет сформировать группы относительно однородных Вузов, которые экспертным путем можно будет в дальнейшем охаpaктеризовать как группы ВУзов соответственно с очень высоким, высоким, средним, низким и очень низким уровнем образования.

Итак, имеется совокупность n объектов, каждый из которых хаpaктеризуется по k замеренным на нем признакам. Требуется разбить эту совокупность на однородные в некотором смысле группы (классы). При этом пpaктически отсутствует априорная информация о хаpaктере распределения измерений внутри классов.

Полученные в результате разбиения группы обычно называются кластерами, а также таксонами или образами. Методы нахождения кластеров называются кластерным анализом.

В задачах кластерного анализа обычной формой представления исходных данных служит прямоугольная таблица:

где xij- результат измерения j-го признака на i-ом объекте.

Наиболее трудным и наименее формализованным в задаче классификации является определение понятия однородности объектов. В общем случае понятие однородности объектов задается введением правила вычислений расстояния  между любой парой исследуемых объектов. Близкие с точки зрения этой метрики объекты считаются однородными, принадлежащими одному классу. При этом необходимо сопоставлять полученные расстояния с некоторым пороговым значением, определяемым в каждом конкретном случае по-своему.

Рассмотрим наиболее часто используемые расстояния в задачах кластерного анализа.

  • Обычное евклидово расстояние

где - величина р-ой компоненты у i-го (j-го) объекта ( ).

Естественно с геометрической точки зрения и содержательной интерпретации евклидово расстояние может оказаться бессмысленным, если его признаки имеют разные единицы измерения. Для приведения признаков к одинаковым единицам прибегают к нормировке каждого признака путем деления центрированной величины на среднее квадратическое отклонение и переходят от матрицы X к нормированной матрице с элементами

,

где - значение р-го признака у i-го объекта; - среднее арифметическое значение р-го признака;

- среднее квадратическое отклонение р-го признака.

  • «Взвешенное» евклидово расстояние

применяется в случаях, когда каждой компоненте xp удается приписать некоторый «вес» wp, пропорциональный степени важности признака в задаче классификации. Обычно принимают , где р=1,...,k.

  • Хеммингово расстояние

используется как мера различия объектов, задаваемых дихотомическими признаками, т.е. признаками, значения которых равны или 0, или 1. Хеммингово расстояние равно числу несовпадений значений соответствующих признаков в рассматриваемых объектах.

По мере того, как объекты объединяются в классы возникает необходимость измерения расстояния между этими классами. Наиболее употребительными расстояниями между классами объектов или кластерами являются:

1. расстояние, измеряемое по принципу «ближайшего соседа», т.е. расстояние между двумя ближайшими точками кластеров

2. расстояние, измеряемое по принципу «дальнего соседа», т.е. расстояние между двумя самыми дальними точками кластеров

3. расстояние, измеряемое по «центрам тяжести» групп

4. расстояние, измеряемое по принципу «средней связи» (Это расстояние определяется как среднее арифметическое всех попарных расстояний между представителями рассматриваемых групп)

Так как существует большое количество различных способов разбиения на классы заданной совокупности элементов, то представляет интерес задача сравнительного анализа качества этих способов разбиения. С этой целью вводится понятие функционала качества разбиения Q(S), определенного на множестве всех возможных разбиений.

Существуют следующие виды функционала качества:

1. сумма внутриклассовых дисперсий

2. сумма попарных внутриклассовых расстояний между элементами

Иерархические кластер-процедуры

Иерархические (деревообразные) процедуры являются наиболее распространенными алгоритмами кластерного анализа. Они бывают двух типов: агломеративные и дивизимные.

Принцип работы иерархических агломеративных процедур состоит в последовательном объединении групп элементов сначала самых близких, а затем все более отдаленных друг от друга.

Принцип работы иерархических дивизимных процедур состоит в последовательном разделении групп элементов сначала самых далеких, а затем все более близких друг к другу.

Результаты

Поскольку кластерный анализ позволяет находить расстояние между объектами по любому количеству показателей, то целесообразной будет организация выбора их состава.

Расстояние между кластерами предлагается находить тремя способами. Это метод ближнего соседа, метод дальнего соседа и метод среднего значения.

В результате мы получим таблицу, в которой для каждого Вуза по указанным факторам будут даны оценки 6 экспертов, усредненные нами по весовым коэффициентам.

В результате получается ряд таблиц, представляющих собой все более укрупненное объединение Вузов в кластеры. Последней мы получаем таблицу 2 на 2, в которой все объекты разбиты на 2 кластера. В зависимости от цели исследования выбирается то или иное количество кластеров. Соответственно получается несколько групп однотипных Вузов. Для каждой группы необходимо разработать соответствующие рекомендации, отвечающие цели исследования.

Для сравнения с результатами, полученными при построении матрицы Мак-Кинси, рассмотрим в качестве факторов интегрированные показатели привлекательности и конкурентоспособности.

Кластерный анализ позволяет нам разделить объекты на требуемое количество групп вне зависимости от количества имеющихся у нас показателей, легко исключить ненужные показатели или связанные друг с другом, но для интерпретации результата, хаpaктеристики каждой группы необходимо применение каких-то других методов, чаще всего экспертных оценок. Именно поэтому матричный метод, в частности, построение матрицы Мак-Кинси, столь удобны, они позволяют не только разбить на группы (на 9 групп), но и получить наглядную хаpaктеристику объектов, попавших в ту или иную группу.



ПРОПАГАНДА ПРАВОВЫХ ЗНАНИЙ В ВУЗЕ, КОЛЛЕДЖЕ, ШКОЛЕ

ПРОПАГАНДА ПРАВОВЫХ ЗНАНИЙ В ВУЗЕ, КОЛЛЕДЖЕ, ШКОЛЕ Статья в формате PDF 125 KB...

21 04 2024 23:17:31

СТРУКТУРА СИНФЛОРИСЦЕНЦИИ ARTEMISIA DRACUNCULUS L. (ASTERACEAE)

СТРУКТУРА СИНФЛОРИСЦЕНЦИИ ARTEMISIA DRACUNCULUS L. (ASTERACEAE) Статья в формате PDF 89 KB...

16 04 2024 23:27:52

НАЙДАНОВА СЭСЭГМА БАДМАЕВНА

НАЙДАНОВА СЭСЭГМА БАДМАЕВНА Статья в формате PDF 72 KB...

14 04 2024 6:58:56

МИКРОЭКОЛОГИЯ ЧЕЛОВЕКА (ЧАСТЬ II)

МИКРОЭКОЛОГИЯ ЧЕЛОВЕКА (ЧАСТЬ II) С экологических позиций излагается представление о человеке как метасистеме, состоящей из макроскопического (тело) и микроскопического (микробиота) компонентов. Последний определяется как биоценоз микроорганизмов — бактерий, простейших, микроскопических грибов и вирусов, встречающийся у здоровых людей. Приводятся некоторые количественные хаpaктеристики микробиоты человека: общее число микроорганизмов, суммарная биомасса, процентное содержание облигатной, факультативной и транзиторной составляющих, время, за которое происходит смена генерации микроорганизмов. Рассматриваются главные системоообразующие факторы, обеспечивающие целостность микробиоты: структурный, метаболический, генетический и информационный. Анализируются взаимоотношения микробиоты и макроорганизма в нормальных физиологических условиях и при патологии. Обсуждаются механизмы развития дисбиозов и патогенетически обоснованные подходы к их коррекции. ...

13 04 2024 13:31:13

ВИДЫ ПАРАДЕЙСТВИЙ В ЯЗЫКЕ И ИССЛЕДОВАНИЕ НЕВЕРБАЛЬНЫХ ЭЛЕМЕНТОВ В ЯЗЫКОЗНАНИИ

ВИДЫ ПАРАДЕЙСТВИЙ В ЯЗЫКЕ И ИССЛЕДОВАНИЕ НЕВЕРБАЛЬНЫХ ЭЛЕМЕНТОВ В ЯЗЫКОЗНАНИИ В статье говорится о видах парадействий в языке и исследованиях невербальных элементов в языкознании. ...

08 04 2024 19:16:11

ПРЕДЕЛЬНЫЕ ЦИКЛЫ В СЛОЖНЫХ ЭКОЛОГИЧЕСКИХ СИСТЕМАХ «ХИЩНИКЖЕРТВА»

ПРЕДЕЛЬНЫЕ ЦИКЛЫ В СЛОЖНЫХ ЭКОЛОГИЧЕСКИХ СИСТЕМАХ «ХИЩНИКЖЕРТВА» В настоящей работе рассматриваются сложные иерархические системы «хищник -жертва - продуцент». В основу исследования таких систем положены достаточно хорошо известные экспериментальные данные, собранные компанией «Гудзонов залив» за более чем столетний период. На нижнем уровне сложной иерархической системы исследуется влияние солнечного потока на скорость роста продуцентов (деревьев, кустарников и т.д.). Показана возможность стохастических колебаний в многоуровневой системе. Подтверждена ранее высказанная гипотеза о возможности колебаний в системе «жертва -продуцент». Математическая модель описывает широкий спектр процессов и явлений, которые хаpaктерны для сложных экологических систем. ...

31 03 2024 4:52:37

РАЗВИТИЕ ТЕРИОЛОГИИ В РОССИИ В XVIII-XX вв.

РАЗВИТИЕ ТЕРИОЛОГИИ В РОССИИ В XVIII-XX вв. В статье рассматриваются основные исторические этапы развития отечественной териологии в XVIII-XX вв., самоотверженно проводившиеся учеными-зоологами несмотря на различные трудности, являвшиеся следствием изменения исторической и политической картины мира. Показан вклад отдельных российских ученых в формировании териологии, а также роль в этом процессе научных сообществ России. ...

26 03 2024 7:50:23

ВЗАИМОСВЯЗАННОСТЬ ПОВЕРХНОСТНЫХ И ПОДЗЕМНЫХ ВОД В ЕДИНОЙ СИСТЕМЕ РЕЧНОГО ВОДОСБОРНОГО БАССЕЙНА; ПРОЯВЛЕНИЕ В КАТАСТРОФИЧЕСКИХ ЯВЛЕНИЯХ В УСЛОВИЯХ ИНТЕНСИВНЫХ ЛИВНЕЙ В ВЫСОКОГОРНЫХ ОБЛАСТЯХ С РЕЗКОРАСЧЛЕНЕННЫМ ГОРНЫМ РЕЛЬЕФОМ

ВЗАИМОСВЯЗАННОСТЬ ПОВЕРХНОСТНЫХ И ПОДЗЕМНЫХ ВОД В ЕДИНОЙ СИСТЕМЕ РЕЧНОГО ВОДОСБОРНОГО БАССЕЙНА; ПРОЯВЛЕНИЕ В КАТАСТРОФИЧЕСКИХ ЯВЛЕНИЯХ В УСЛОВИЯХ ИНТЕНСИВНЫХ ЛИВНЕЙ В ВЫСОКОГОРНЫХ ОБЛАСТЯХ С РЕЗКОРАСЧЛЕНЕННЫМ ГОРНЫМ РЕЛЬЕФОМ В настоящей работе предлагается оригинальный подход для объяснения процессов образования и распространения селей в горных условиях в условиях резкого увеличения вовлекаемых в этот процесс водных масс. Нами предлагается модель, согласно которой необходимыми условиями возникновения селя являются следующие: наличие глубинного трещинообразования в русле горной реки, перепад высот, наличие пула водной массы (обычно, – над областью будущего возникновения селя), обеспечивающего необходимый перепад гидростатического давления, а также выпадение осадков в виде обильных дождей, тающих снегов в верховьях селеопасных рек, провоцирующих это явление. Одним из принципиальных базовых допущений, на котором строится наша модель и которое подтверждается наблюдениями селевых катастроф, является то, что объем/масса водного селевого выброса может существенно превосходить оцениваемое количество выпавших осадков на поверхности. В связи с этим естественное объяснение получает общеизвестный факт, что не все ливневые дожди приводят к катастрофическим последствиям. Сущность и новизна нашей модели заключается в том, что в селевом взрыве активно участвуют как поверхностные, так и подземные воды, т.е. речь идет о 3D-механизме формирования селя. При этом в русле создается определенный участок – ворота селя, где начинает идти интенсивная подземная подпитка водой (за счет перепада давлений) основного импульса селя. И этот процесс может играть доминирующую роль. Нами предлагается математическая модель рождения и распространения селя, в основе которой лежат представления нелинейной гидродинамики волновых процессов с формированием солитонов. В рамках развиваемой концепции в заключительном разделе 5 данной статьи приведен краткий анализ возможных причин произошедшего катастрофического наводнения в г. Крымске (июль 2012 г.). ...

18 03 2024 21:34:50

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::