ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЭЛЕКТРОФИЗИЧЕСКИХ ФАКТОРОВ НА ЖИЗНЕСПОСОБНОСТЬ ПОСЕВНОГО МАТЕРИАЛА > Полезные советы
Тысяча полезных мелочей    

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЭЛЕКТРОФИЗИЧЕСКИХ ФАКТОРОВ НА ЖИЗНЕСПОСОБНОСТЬ ПОСЕВНОГО МАТЕРИАЛА

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЭЛЕКТРОФИЗИЧЕСКИХ ФАКТОРОВ НА ЖИЗНЕСПОСОБНОСТЬ ПОСЕВНОГО МАТЕРИАЛА

Спиров Г.М. Валуева Ю.В. Меркулова В.Г. Лукьянов Н.Б. Зайцев А.С. В работе представлены результаты исследования влияния высокоинтенсивных физических факторов электрического поля коронного разряда с напряженностью 1-6 кВ/см, создаваемого установкой «Экран», на жизнеспособность семян ячменя сорта «Абава», с целью повышения качества семенного материала. Определено, что наиболее эффективными воздействиями ЭПКР для повышения качества семенного материала без отлежки зерна перед посевом являются режимы с напряженностью 1 кВ/см и 2 кВ/см. Показано, что наиболее ярко выраженный бактерицидный эффект получен при воздействии на семена электрическим полем коронного разряда с напряженностью 6 кВ/см и 4 кВ/см. Эти режимы наряду с угнетением очаговой плесени тормозят всхожесть, прорастание и снижают жизнеспособность семян. Однако, данные режимы могут оказаться перспективными для обеззараживающей обработки фуражного зерна. Выявлено, что наиболее эффективным режимом электрического поля коронного разряда для повышения качества семенного материала с отлежкой зерна перед посевом является режим с напряженностью 2 кВ/см, поскольку данное воздействие оказывает наиболее ярко выраженный бактерицидный эффект наряду со стимуляцией всхожести, прорастания и повышением жизнеспособности семян. Статья в формате PDF 186 KB

Введение

Достижение наибольшей урожайности растений определяется потенциальной продуктивностью сорта, качеством семенного материала, агротехникой возделывания растений. Среди этих факторов качество семенного материала играет заметную, а нередко и решающую роль.

Семена большинства зерновых, овощных культур и кормовых корнеплодов хаpaктеризуются высокой степенью разнообразия посевных качеств и свойств. Семена разного качества появляются из-за различного состояния зрелости, плотности и размеров семян, продолжительности и периода покоя, которые обусловлены различиями условий формирования семян на материнском растении.

Разработанные и апробированные пpaктикой методы, называемые предпосевной обработкой семян, позволяют улучшить посевные качества семян и, в конечном итоге, увеличить урожайность растений. Предпосевную обработку семян можно считать одним из важнейших приемов агротехники.

Среди способов предпосевной обработки семенного материала в последнее время все более широкое применение получают методы, основанные на использовании различных факторов физической природы. Разработка новых методов повышения жизнеспособности сельскохозяйственных культур является важнейшей задачей агробиологических наук и сельскохозяйственного производства. Одним из перспективных направлений является применение высокоинтенсивных физических факторов, генерируемых электрофизическими методами.

В семенах происходят физико-химические, физиолого-биохимические процессы, морфологические изменения, приводящие к повышению проницаемости семенных покровов, усилению активности гидролитических и окислительно-восстановительных ферментов, ускорению темпа клеточного деления, активизации ростовых процессов в целом.

Для получения устойчивого стимулирующего эффекта необходимо учитывать следующие условия: качество семенного материала, вид и режим воздействия, условия, в которых находился семенной материал после воздействия («отлежка»). Очевидно, что на этапе исследования для выбора оптимального стимулирующего воздействия необходимо иметь экспериментальные методы, которые позволяли бы оценить изменение качества семян по изменению тех или иных показателей.

Оценка качества семян - актуальная задача. Существует много методов оценки качества (жизнеспособности) семян. Согласно Государственному стандарту, жизнеспособность - количество живых семян, выраженное в процентах от общего количества. Методы оценки качества, чаще всего хаpaктеризуют степень изменения одного из перечисленных показателей: деградация клеточных мембран и вытекающая отсюда потеря контроля проницаемости, повреждение механизмов энергоснабжения биосинтеза, ослабление дыхания, замедление прорастания семян и роста проростков, понижение способности к хранению, замедление роста и развития растений, снижение выравненности роста и развития растений, повышение чувствительности к экологическим стрессам, увеличение числа морфологически нeнopмaльных отростков, потеря всхожести.

Целью данной работы являлось исследование воздействия высокоинтенсивных физических факторов электрического поля коронного разряда градиентного типа установки "Экран" [1, 2] в диапазоне напряженности 1-6 кВ/см на семена ячменя сорта «Абава» для повышения качества семенного материала.

Для достижения цели потребовалось решение следующих задач:

- выявление оптимального режима повышения качества семенного материала с помощью установки «Экран»;

- разработка критериев комплексной оценки жизнеспособности семян при воздействии электрического поля коронного разряда (ЭПКР).

Материалы и методы

В качестве объекта исследования использовался ячмень сорта «Абава» со всхожестью 62%.

В соответствии с целью и задачами исследований работа проводилась по следующим направлениям:

- экспериментальное исследование влияния ЭПКР напряженности от 1 до 6 кВ/см на семенной материал сразу после воздействия;

- экспериментальное исследование влияния ЭПКР напряженности от 1 до 6 кВ/см на семенной материал после отлежки перед посевом зерна.

Оценка жизнеспособности посевного материала проводилась по тетразольно-топографической методике
ГОСТ 12039-82 [3].

Оценка всхожести, энергии прорастания и очаговой плесени проводилась по ГОСТ 12038-84 [4].

Воздействие ЭПКР градиентного типа на семена ячменя сорта "Абава" проводилось с помощью разработанного в НТЦФ ВНИИЭФ опытного устройства для обработки посадочного материала «Экран» (рисунок 1) по схеме, представленной на рисунке 2 [1].

Рис. 1. Устройство для обработки посадочного материала «Экран-М»

Рис. 2. Схема обработки семян

Технические хаpaктеристики установки «Экран» представлены в таблице 1.

Таблица 1. Технические хаpaктеристики установки «Экран»

Длительность экспозиции обработки зерна, с

0,3

Количество каналов рабочей камеры

3

Максимальная производительность обработки семян ячменя, л/мин

60

Максимальная производительность обработки овса, л/мин

40

Напряжение сетевого питания, В

220

Максимальная потрeбляемая мощность, Вт

10

Семена подвергались воздействию ЭПКР в шести режимах, отличающихся напряженностью ЭПКР в рабочей камере: 1 кВ/см, 2 кВ/см, 3 кВ/см, 4 кВ/см, 5 кВ/см, 6 кВ/см.

Обработанные семена делились на 3 группы:

- 200 шт. для методики определения жизнеспособности по ГОСТ 12039-82;

- 400 шт. для методики определения энергии прорастания, всхожести и очаговой плесени по ГОСТ 12038-84.

Для выявления эффектов воздействия ЭПКР формировались контрольные группы, которые количественно соответствовали опытным образцам и исследовались по аналогичным методикам.

Опыты закладывались через 1 сутки после обработки ЭПКР и через 7 суток отлежки после воздействия. После закладки семена тестировали:

  • по методике ГОСТ 12039-82 через 1 сутки;
  • по методике ГОСТ 12038-84 через 7 суток.

Оценка жизнеспособности посевного материала проводилась по тетразольно-топографической методике
ГОСТ 12039-82 [3].

Тетразольно-топографический метод, реализуемый по ГОСТ 12039-82 [3], - один из эффективных биохимических способов оценки жизнеспособности семян и получения экспресс информации об их качестве, когда семена находятся в состоянии покоя или требуют длительного срока проращивания.

В основе метода лежит превращение дегидрогеназами живых клеток бесцветного хлористого тетразола в недиффундирующий красный фармазан (окрашиваются живые ткани) [5]. В результате, зародыш таких семян приобретает красный (малиновый) цвет, а зародыш мертвого "спящего" семени остается неокрашенным.

Для окрашивания зародышей используют 0,5 % водный раствор тетразола (5 г тетразола растворяют в 1000 см3 дистиллированной или свежекипяченой воды с рН 6,0-7,0). Семена замачивают в воде в течение 15-18 часов при температуре 20 °С. Затем, семена разрезают вдоль на две половинки: зерновые - вдоль зародыша; зернобобовые, овощные, технические - на две семядоли вдоль корешка. Каждую подготовленную сотню половинок семян промывают несколько раз водой для удаления остатков разрезанных тканей, полностью погружают в раствор тетразола и выдерживают в темноте. Температура и срок выдержки зависят от оцениваемой культуры. Другая сотня половинок семян в анализе не используется. Обработанные семена (или половинки семян) после промывания водой раскладывают на фильтровальной бумаге. Затем семена просматривают с помощью лупы, бинокуляра или невооруженным глазом (в зависимости от культуры и распространения некрозов), поддерживая их во влажном состоянии на протяжении всего исследования.

Каждое семя оценивается как жизнеспособное или нежизнеспособное в соответствии со степенью (площадью) окрашивания. Количество жизнеспособных семян подсчитывают на основе следующих критериев: к жизнеспособным семенам ячменя относят семена, у которых зародыш полностью окрашен, а к нежизнеспособным семенам ячменя относят семена, у которых зародыш полностью не окрашен, за исключением центральной части, включая стeблевую корневую меристемы; не окрашена корневая часть почечка; зародыш не окрашен, за исключением половины щитка (вдоль) и центральной части; не окрашена корневая часть, нижний конец щитка и колеориза.

Таким образом, классический метод определения жизнеспособности семян позволяет качественно определить состояние семени и дать процентное отношение всхожести семян.

Оценка всхожести, энергии прорастания и очаговой плесени проводилась по ГОСТ 12038-84.

Всхожесть семян является одним из основных критериев оценки качества посевного материала. Всхожесть семян определяют для того, чтобы установить количество семян, способных образовать нормально развитые проростки. Семена проращивают в оптимальных условиях согласно требованиям ГОСТа 12038-84, что позволяет определить всхожесть за недельный срок.

Энергия прорастания хаpaктеризует дружность и быстроту прорастания семян. Определяют ее в одном анализе со всхожестью.

Семена культуры тщательно перемешивают и отсчитывают 4 пробы по 100 семян. В качестве ложа для проращивания используют увлажненную фильтровальную бумагу. Растильни с семенами ставят в термостат на проращивание.

Подсчет нормально проросших семян проводят дважды, в первый раз определяют энергию прорастания, во второй - всхожесть. Подсчет ведут по каждой повторности, разделяя проростки на нормально и нeнopмaльно проросшие, набухшие и загнившие (очаговая плесень). Для вычисления всхожести семян суммируют количество нормально проросших семян при учете энергии прорастания и при учете всхожести и общее их число выражают в процентах.

К числу нормально проросших семян относят семена, имеющие хорошо развитые корешки (или главный зародышевый корешок), имеющие здоровый вид, хорошо развитые и неповрежденные подсемядольное колено (гипокотиль) и надсемядольное колено (эпикотиль) с нормальной верхушечной почечкой, две семядоли - у двудольных, первичные листочки, занимающие не менее половины длины колеоптиля - у злаковых.

При определении энергии прорастания и всхожести семян учитывают также поражение семян плесневыми грибами. Средний процент пораженных семян определяют визуально по четырем пробам и устанавливают степень поражения в соответствии с ГОСТа 12038-84 в процентах.

Результаты исследования

Механизм действия электрического поля коронного разряда градиентного типа заключается в активации электронного комплекса молекул, составляющих семя, ионизации этих молекул, образовании свободных радикалов, т. е. в переходе молекул в возбужденное состояние. Несмотря на то, что молекулы в возбужденном состоянии находятся доли секунды, известно [7, 8], что этого достаточно для усиления работы ферментных систем, контролирующих прорастание семян.

На рисунке 3 представлены нормированные к контролю значения жизнеспособности семян ячменя сорта «Абава», зарегистрированные сразу после воздействия на семена ЭПКР с напряженностью от 1 до 6 кВ/см. Выявлено, что в данном диапазоне напряженности биологический эффект имеет разнонаправленный хаpaктер. Жизнеспособность семян по сравнению с контрольными значениями увеличивалась при всех значениях напряженности, за исключением 4 кВ/см, при котором жизнеспособность уменьшалась. Наиболее ярко выраженное увеличение жизнеспособности в 3,4 раза отмечено после воздействия ЭПКР напряженностью 2 кВ/см.

 

Рис. 3. Жизнеспособность (опыт/контроль) семян ячменя сразу после воздействия ЭПКР

На рисунках 4 и 5 представлены нормированные к контролю значения энергии прорастания и всхожести семян ячменя сорта «Абава», зарегистрированные сразу после воздействия на семена ЭПКР с напряженностью от 1 до 6 кВ/см. Выявлено, что в данном диапазоне напряженности биологический эффект, как и при исследовании жизнеспособности, имеет разнонаправленный хаpaктер. Энергия прорастания и всхожесть семян по сравнению с контрольными значениями увеличивались при всех значениях напряженности, за исключением 3 кВ/см и 4 кВ/см, причем, при напряженности 3 кВ/см энергия прорастания и всхожесть уменьшались не значительно - в 0,9 раза. Наибольшее увеличение энергии прорастания и всхожести в » 1,4 раза отмечено после воздействия ЭПКР напряженностью 1 кВ/см.

Рис. 4. Энергия прорастания (опыт/контроль) семян ячменя сразу после воздействия ЭПКР

Рис. 5. Всхожесть (опыт/контроль) семян ячменя сразу после воздействия ЭПКР

На рисунке 6 представлены нормированные к контролю значения очаговой плесени семян ячменя сорта «Абава», зарегистрированные сразу после воздействия на семена ЭПКР с напряженностью от 1 до 6 кВ/см. Выявлено, что в данном диапазоне напряженности биологический эффект имеет однонаправленный угнетающий хаpaктер. Очаговая плесень семян по сравнению с контрольными значениями угнеталась при всех значениях напряженности ЭПКР. Наиболее ярко выраженное угнетение очаговой плесени отмечено после воздействия ЭПКР напряженностью 6 кВ/см и 4 кВ/см.

 

Рис. 6. Очаговая плесень (опыт/контроль) семян ячменя сразу после воздействия ЭПКР

Таким образом, по результатам данного исследования наиболее эффективными режимами ЭПКР для повышения качества семенного материала без отлежки являются режимы с напряженностью 1 кВ/см и 2 кВ/см. Наиболее ярко выраженный бактерицидный эффект без отлежки семян получен при воздействии ЭПКР с напряженностью 6 кВ/см и 4 кВ/см. Эти режимы наряду с угнетением очаговой плесени тормозят всхожесть, прорастание и снижают жизнеспособность семян. Однако, данные режимы могут оказаться перспективными для обеззараживающей обработки фуражного зерна.

На рисунке 7 представлены нормированные к контролю значения жизнеспособности семян ячменя сорта «Абава», зарегистрированные при воздействии на семена ЭПКР с напряженностью от 1 до 6 кВ/см после отлежки. Выявлено, что в данном диапазоне напряженности биологический эффект имеет разнонаправленный хаpaктер. Жизнеспособность семян после отлежки по сравнению с контрольными значениями увеличивалась при значениях напряженности 1 кВ/см, 2 кВ/см и 4 кВ/см, при значениях напряженности 3 кВ/см, 5 кВ/см и 6 кВ/см жизнеспособность уменьшалась. Наиболее ярко выраженное увеличение жизнеспособности в 4,3 раза отмечено после воздействия ЭПКР напряженностью 1 кВ/см.

 

Рис. 7. Жизнеспособность (опыт/контроль) семян ячменя после воздействия ЭПКР с отлежкой

На рисунке 8 представлены нормированные к контролю значения энергии прорастания семян ячменя сорта «Абава», зарегистрированные при воздействии на семена ЭПКР с напряженностью от 1 до 6 кВ/см после отлежки. Выявлено, что при напряженностях 2 кВ/см, 4 кВ/см и 6 кВ/см биологический эффект ЭПКР имеет однонаправленный стимулирующий хаpaктер. Энергия прорастания семян после отлежки по сравнению с контрольными значениями при значениях напряженности 1 кВ/см, 3 кВ/см и 5 кВ/см пpaктически не изменялась.

 

Рис. 8. Энергия прорастания (опыт/контроль) семян ячменя после воздействия ЭПКР с отлежкой

Всхожесть семян ячменя сорта «Абава» после отлежки по сравнению с контрольными значениями увеличивалась при значениях напряженности ЭПКР 2 кВ/см, 4 кВ/см, 5 кВ/см и 6 кВ/см и пpaктически не изменялась при значениях напряженности 1 кВ/см и 3 кВ/см. На рисунке 9 представлены нормированные к контролю значения всхожести семян ячменя сорта «Абава», зарегистрированные при воздействии на семена ЭПКР с напряженностью от 1 до 6 кВ/см после отлежки.

 

Рис. 9. Всхожесть (опыт/контроль) семян ячменя после воздействия ЭПКР с отлежкой

На рисунке 10 представлены нормированные к контролю значения очаговой плесени семян ячменя сорта «Абава», зарегистрированные после воздействия на семена ЭПКР с напряженностью от 1 до 6 кВ/см после отлежки. Выявлено, что в данном диапазоне напряженности биологический эффект имеет однонаправленный угнетающий хаpaктер. Очаговая плесень семян по сравнению с контрольными значениями угнеталась при всех значениях напряженности ЭПКР. Наиболее ярко выраженное угнетение очаговой плесени отмечено после воздействия ЭПКР напряженностью 1 кВ/см и 2 кВ/см.

 

Рис. 10. Очаговая плесень (опыт/контроль) семян ячменя после воздействия ЭПКР с отлежкой

Таким образом, по результатам данного исследования наиболее эффективным режимом ЭПКР для повышения качества семенного материала с отлежкой является режим с напряженностью 2 кВ/см, поскольку данное воздействие оказывает наиболее ярко выраженный бактерицидный эффект наряду со стимуляцией всхожести, прорастания и повышением жизнеспособности семян.

В связи с тем, что механизм действия электрического поля коронного разряда градиентного типа заключается в активации работы ферментных систем, можно предположить, что при воздействии на семена ЭПКР с напряженностью от 1 до 6 кВ/см происходят изменения активности ферментативных систем, как семян, так и паразитирующих на них плесневых грибов. Данное предположение подтверждается выявленным положительным влиянием отлежки семян после обработки ЭПКР на жизнеспособность семян.

Выводы

1. Проведены экспериментальные исследования влияния ЭПКР градиентного типа в диапазоне напряженности 1-6 кВ/см, создаваемого установкой «Экран» на жизнеспособность семян ячменя сорта «Абава».

2. Определено, что наиболее эффективными режимами ЭПКР для повышения качества семенного материала без отлежки являются режимы с напряженностью 1 кВ/см и 2 кВ/см.

3. Показано, что наиболее ярко выраженный бактерицидный эффект без отлежки семян получен при воздействии ЭПКР с напряженностью 6 кВ/см и 4 кВ/см. Эти режимы наряду с угнетением очаговой плесени тормозят всхожесть, прорастание и снижают жизнеспособность семян. Однако, данные режимы могут оказаться перспективными для обеззараживающей обработки фуражного зерна.

4. Выявлено, что наиболее эффективным режимом ЭПКР для повышения качества семенного материала с отлежкой является режим с напряженностью 2 кВ/см, поскольку данное воздействие оказывает наиболее ярко выраженный бактерицидный эффект наряду со стимуляцией всхожести, прорастания и повышением жизнеспособности семян.

СПИСОК ЛИТЕРАТУРЫ:

  1. Спиров Г.М., Савосин С.В., Лукьянов Н.Б., Шлепкин С.И., Климкин В.И., Селемир Н.М. Применение электрического поля коронного разряда для стимулирования и обеззараживания посевного материала // Высокоинтенсивные физические факторы в биологии, медицине, сельском хозяйстве и экологии. Тр. Международной конф. 26-28 апреля 2004 г. - Саров, 2004. - С. 278-284.
  2. Спиров Г.М., Селемир В.Д. Разработка устройств для получения высокоинтенсивных физических факторов в НТЦ-1 ВНИИЭФ и перспективы их использования // Высокоинтенсивные физические факторы в биологии, медицине, сельском хозяйстве и экологии. Тр. Международной конф. 26-28 апреля 2004 г. - Саров, 2004. - С. 380-387.
  3. ГОСТ 12039-82. «Семена сельскохозяйственных культур. Методы определения жизнеспособности». Издательство стандартов, 1982.
  4. ГОСТ 12038-84. «Методы определения всхожести семян сельскохозяйственных культур». Издательство стандартов, 1984.
  5. Егорова Н.Н. Методы определения жизнеспособности семян // Сельскохозяйственная биология. 1994. № 3. С. 134-141.
  6. Батыгин Н.Ф., Потапова С.М., Кортава Т.С. и др. Перспективы использования факторов воздействия в растениеводстве. М. ГВНИИТЭИСХ. 1978. 56 с.
  7. Батыгин Н. Ф. Биологические основы предпосевного облучения семян и зоны ее эффективности // Сельскохозяйственная биология. 1980. Вып.4. С. 495-04.
  8. Спиров Г.М., Селемир В.Д., ВерховаА.Ф. и др. Разработка электрофизических способов и аппаратуры для стимулирующей обработки семян и растений // Машинные технологии и новая сельскохозяйственная техника для условий евро-северо-востока России / Материалы II-ой Международной научно-пpaктической конференции. 20-23 июня 2002 г. - Киров, 2000. - С. 44-55.
  9. Утин Н.В., Панин А.М., Зуймач Е.А., Спиров Г.М. Экспериментальные исследования воздействия электрофизических факторов на урожайность злаковых культур // Высокоинтенсивные физические факторы в биологии, медицине, сельском хозяйстве и экологии. Тр. Международной конф. 26-28 апреля 2004 г. - Саров, 2004. - С. 290-297.


ТЕСТОВЫЕ ЗАДАНИЯ ПО ПАТОЛОГИЧЕСКОЙ АНАТОМИИ

ТЕСТОВЫЕ ЗАДАНИЯ ПО ПАТОЛОГИЧЕСКОЙ АНАТОМИИ Статья в формате PDF 275 KB...

23 11 2022 13:39:32

ЩИТОВИДНАЯ ЖЕЛЕЗА: МОРФОМЕТРИЧЕСКИЙ АНАЛИЗ

ЩИТОВИДНАЯ ЖЕЛЕЗА: МОРФОМЕТРИЧЕСКИЙ АНАЛИЗ В статье представлены новые морфометрические параметры щитовидной железы, которые дополняют и вместе с тем расширяют наше представление о функциональной активности органа. Приведенная морфометрическая программа является уникальным инструментом физиологического анализа. ...

21 11 2022 19:17:39

Акустическое воздействие мини-ТЭЦ с газопоршневыми и дизельными двигателями на окружающую среду

Акустическое воздействие мини-ТЭЦ с газопоршневыми и дизельными двигателями на окружающую среду В работе дана экологическая оценка возможных последствий на окружающую среду, жизнь и здоровье населения. Показано, что при решении выбора источника энергии необходимо учитывать не только экономические, но и экологические последствия возможного влияния объектов энергетики при строительстве и эксплуатации. Комбинированное производство энергии двух видов на мини–ТЭЦ способствуют гораздо более экологичному использованию топлива по сравнению с раздельной выработкой электроэнергии и тепловой энергии на котельных установках, но и повышению чистоты воздушного бассейна, улучшению общего экологического состояния окружающей среды. Интенсивное шумовое воздействие на организм человека нeблагоприятно влияет на протекание нервных процессов, способствует развитию утомления, изменениям в сердечно-сосудистой системе и появлению шумовой патологии, среди многообразных проявлений которой ведущим клиническим признаком является медленно прогрессирующее снижение слуха. В работе рассмотрено воздействие мини-ТЭЦ с дизельными и газопоршнеыми двигателями мощностью 1000 кВт на окружающую среду. Установлено что, шум, создаваемый электростанцией, состоящей их 4 газопоршневых двигателей мощностью 1000 кВт, будет ниже допустимого для территории, непосредственно прилегающей к жилым домам. Поэтому специальных мероприятий по снижению шума не требуется. ...

14 11 2022 7:55:28

ДИНАМИКА ПОКАЗАТЕЛЕЙ ПОВЕДЕНИЯ ГОМОЗИГОТНЫХ (А2/А2) КРЫС ПО ЛОКУСУ TAG 1A DRD2 ДО И ПОСЛЕ АУДИОГЕННОЙ СТИМУЛЯЦИИ

ДИНАМИКА ПОКАЗАТЕЛЕЙ ПОВЕДЕНИЯ ГОМОЗИГОТНЫХ (А2/А2) КРЫС ПО ЛОКУСУ TAG 1A DRD2 ДО И ПОСЛЕ АУДИОГЕННОЙ СТИМУЛЯЦИИ В тесте «открытое поле» изучено поведение гомозиготных (A2/A2) по локусу TAG 1A DRD2 крыс линии WAG/Rij до и после шести сеансов аудиогенной стимуляции, сопровождавшихся большими судорожными припадками. Найдено, что после стимуляции резко снижается двигательная и исследовательская активность крыс. ...

08 11 2022 21:21:23

ПЕТРОЛОГИЯ И ФЛЮИДНЫЙ РЕЖИМ ПОРФИРОВЫХ СИСТЕМ

ПЕТРОЛОГИЯ И ФЛЮИДНЫЙ РЕЖИМ ПОРФИРОВЫХ СИСТЕМ Рассмотрены физико-химические параметры гаматогенных флюидов порфировых систем различных геодинамических обстановок. Показаны отличия в хаpaктере развития и изменения флюидного режима различных по масштабу оруденения порфировых месторождений. Высказано предположение о важной роли возникновения нестабильности в листосфере, астеносфере и более глубоких геосфер с участием плюмтектоники при формировании крупных порфировых систем. ...

02 11 2022 23:35:38

РУССКИЙ АЛФАВИТ КАК СИСТЕМА

Статья в формате PDF 142 KB...

31 10 2022 18:46:46

ДИНАМИКА УРОЖАЙНОСТИ УЛУЧШЕННЫХ СЕНОКОСОВ

ДИНАМИКА УРОЖАЙНОСТИ УЛУЧШЕННЫХ СЕНОКОСОВ Для функционального описания поведения территории нами вводится новые понятия — активность и интенсивность растительного покрова. Причем территория понимается как простейшее геодезическое изображение ландшафта. А сам ландшафт, в свою очередь, является первым компонентом динамической геотриады «ландшафт + население + хозяйство». Активность учитывается по доле площади растительного покрова (леса и древесно-кустарниковая растительность, луга и пастбища, особо охраняемые территории и болота) и этот экологический параметр позволяет хаpaктеризовать фактически образовавшиеся отклонения от территориального экологического равновесия на конкретной территории. Рассмотрены районы и города Республики Марий Эл (РМЭ) по состоянию распределения земель на 01.01.07 г. В наиболее общем случае интенсивность проявляется как активность во времени. Физически интенсивность — это скорость изменений. А активность — это сами изменения в природной, природно-техногенной или технической среде (по площади, урожайности растений, продуктивности почвы и пр.) в некотором срезе времени. ...

30 10 2022 19:34:54

ОСНОВЫ ГРАВИТАЦИИ (КРАТКОЕ ИЗЛОЖЕНИЕ)

ОСНОВЫ ГРАВИТАЦИИ (КРАТКОЕ ИЗЛОЖЕНИЕ) Статья в формате PDF 98 KB...

22 10 2022 15:47:19

ПРИЛОЖЕНИЕ ТЕРМОДИНАМИКИ К ПРОГНОЗУ ТЕПЛОПРОВОДНОСТИ ЛЕГКОГО БЕТОНА

ПРИЛОЖЕНИЕ ТЕРМОДИНАМИКИ К ПРОГНОЗУ ТЕПЛОПРОВОДНОСТИ ЛЕГКОГО БЕТОНА Основным механизмом теплообмена для капиллярно-пористых физических систем (типа легкого бетона) является контактная теплопроводность, которая осуществляется благодаря связанным между собой процессам: переходом тепла от частицы к частице через непосредственные контакты между ними и переходом тепла через разделяющую промежуточную среду. С термодинамической точки зрения теплообмен в легких бетонах представляет собой теплоперенос (поток тепла Q), а точнее перенос энтропии (S), под действием градиента температуры (Т), осуществляемый, в соответствии со вторым законом термодинамики, от мест с более высокой к местам с меньшей температурой. Термодинамическая идентичность коэффициента теплопроводности () и S позволила, на базе второго закона термодинамики, вывести общее уравнение для прогноза теплопроводности легкого бетона в условиях его эксплуатации. Установлено, что релаксация теплопроводности (τ) пропорциональна затуханию объемных деформаций бетона (Θ), вызванных температурным градиентом и уровнем напряжения (η). Экспериментальные исследования теплопроводности легкого бетона подтвердили затухающий хаpaктер изменения Δλ как функции времени (t) и деформативности. ...

16 10 2022 6:29:17

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::