ИСТОЧНИК УФ ИЗЛУЧЕНИЯ С ЭНЕРГИЕЙ ФОТОНОВ 7-15 эВ > Полезные советы
Тысяча полезных мелочей    

ИСТОЧНИК УФ ИЗЛУЧЕНИЯ С ЭНЕРГИЕЙ ФОТОНОВ 7-15 эВ

ИСТОЧНИК УФ ИЗЛУЧЕНИЯ С ЭНЕРГИЕЙ ФОТОНОВ 7-15 эВ

Саенко В.Б. Статья в формате PDF 305 KB

Введение

Интерес к разработке источников коротковолнового УФ излучения обусловлен бурным развитием фотохимических и фотофизических технологий в квантовой электронике, микроэлектронике, нефтехимии, медицине, экологии при очистке воды и воздуха, а также при фотосинтезе озона [1-7]. Генерация широкоапертурных фотонных пучков с энергией Еф = 7-15 эВ существенно расширяет потенциальные возможности фотохимических и фотофизических технологий и устройств. При помещении предлагаемых источников УФ в лазерную или плазмохимическую среду реализуется режим оптической накачки или поддержания несамостоятельного разряда за счет фотоионизации газовых присадок с потенциалом фотоионизации свыше UI ³ 9,25 эВ (NO) - 10,15 (NH3) - 12,1 эВ (О2,Xe). При генерации фотонов с энергией Еф ³ 10 -15 эВ увеличивается коэффициент фотоэмиссии, приближаясь к значению g ~ 0,1, что можно использовать при создании эффективных фотокатодов в электронных ускорителях [8]. Предлагаемый открытый импульсно-периодический источник УФ на основе линейки или матрицы излучающих Z-микропинчей плазмы (N ~ 100) [9,10] представляет собой тепловой источник и его спектр излучения близок к спектру излучения абсолютно черного тела [11].

Источники УФ излучения

В процессе расчетно-теоретических и экспериментальных исследований [9,10] изучен и установлен механизм генерации фотонов с энергией Еф >10 эВ, разработаны эффективные источники УФ на основе многозазорного разряда, рис. 1-3.

Рис. 1. Линейный источник УФ излучения с двойным разрядом на основе матрицы Z-микропинчей. Электроды накоротко подсоединены к емкостному накопителю энергии С. Основной сильноточный разряд малоиндуктивного RCL- контура управляется барьерным разрядом

Рис. 2. Источник УФ излучения с двойным разрядом на основе матрицы Z-микропинчей.

Источник УФ излучения, рис.2, содержит матрицу разрядных промежутков N = 90 на площади S = 10 х 10 см. Схема организации разряда представляет собой двойной разряд, когда возможен режим барьерного разряда и последующее инициирование сильноточного разряда при подключении емкостного накопителя энергии. Параметры плазмы могут изменяться от хаpaктеристик барьерного разряда до хаpaктеристик сильноточного разряда короткой длительности (Z-микропинч). Режим работы источника плазмы определяется схемой питания барьерного разряда и может быть импульсно-периодическим с частотой до f ~ 104 Гц при длительности импульсов разряда t = 0,1- 1мкс и энерговкладе в отдельный разрядный промежуток W ~ 0,01мДж. В зависимости от режима работы потрeбляемая электрическая мощность составляет Р =10 - 103 Вт.

 

Рис. 3. Внешний вид моделей линейного и кольцевого источников УФ. Потрeбляемая мощность одной линейки или кольца до 100 Вт при напряжении до 3 кВ. Искровые промежутки организованы с зазором 0,2-0,3 мм и шагом 1 см. Импульсно-периодические разряды с частотой f = 1 кГц происходят между шайбами из Мо диаметром 3 мм. Искровые промежутки собраны с конденсаторами К15-5 (3.3 нФ, 3 кВ) по схеме Аркадьева-Маркса.

Найдены физико-технические способы быстрого подвода повторяющихся с высокой частотой импульсов тока к матрице микрошнуров плазмы, рассредоточенных на поверхности с плотностью порядка 1 см-2. В моноимпульсе реализован режим квазистационарного состояния микрошнуров плазмы, рис.4, с радиусом R ~ 0, 2 мм в течение примерно 200 нс, что позволяет обеспечить температуру излучающей плазмы до 1- 5 эВ и выше, рис.4. Найдены способы резкого снижения паразитной индуктивности разрядного RCL - контура и повышения частоты следования импульсов разряда и излучения до f ³10 кГц. Возможен режим оптимизации температуры плазмы и спектрального состава излучения за счет изменения параметров разрядного промежутка, параметров RCL - контура и состава рабочей смеси газов.

Рис. 4. Динамика расширения плазменного микрошнура. Излучающий разряд в воздухе, разрядный промежуток - 0,5 мм, апериодический импульс тока с амплитудой 750 А имел длительность 400 нс. Экспозиция - 10 нс, интервал между кадрами - 100 нс.[12].

Фотоионизационное возбуждение СО2-лазеров

Известно [13], что только с помощью слаботочных пучков быстрых электронов с энергией Ее >100 кэВ можно обеспечить поддержание непрерывных (импульсно-периодических) электроионизационных разрядов в потоке плотных газов. Нами получен квазинепрерывный режим горения разряда в смеси N2:NH3 (0,1%), р ~ I атм, при частоте следования импульсов УФ излучения f ≥ 10 кГц [1], показана принципиальная возможность квазинепрерывной генерации импульсно-периодического СО2 - лазера, рис.5,6. По сравнению с электроионизационным разрядом осуществить фотоионизационный разряд технически гораздо проще, однако требуется достаточно точное согласование параметров внешнего источника ионизации (УФ ионизатора) с параметрами газоразрядной камеры, оптимизация химического состава возбуждаемой смеси газов. К очевидным преимуществам фотоионизационной системы накачки по сравнению с электроионизационным способом возбуждения мощных газовых лазеров повышенного давления можно отнести малые весо-габаритные параметры, отсутствие высоковакуумной и высоковольтной техники, отсутствие рентгеновского излучения.

Отличие нашего подхода [1] к разработке фотоионизационной системы накачки по сравнение с известными [14], заключалось в том, что в процессе исследований был разработан эффективный источник коротковолнового УФ излучения для спектрального диапазона Δ λ ≈ 100 - 135 нм, обусловленного спектрами пропускания и фотопоглощения газовых компонент, входящих в состав СО2 (СО) - лазерных сред. Использование более коротковолнового УФ излучения позволило перейти к молекулярным и атомарным газовым присадкам с низкой температурой кипения ( NO, NH3, C2H4, O2, Xe). Такое направление исследований привело к принципиально новым результатам. Определены оптимальные условия, при которых энергетические затраты на фотоионизацню СО2(СО) -лазерных сред составили величину порядка 10% от энерговклада в объемный разряд. Переход от паров органических легкоионизуемых соединений [14] к газообразным присадкам снимал технические трудности, связанные с охлаждением лазерных сред, их дозировкой и смешением в проточных системах. Устойчивость квазинепрерывного фотоионизационного разряда оказалась выше, чем в несамостоятельных разрядах, контролируемых пучком быстрых электронов. Этот факт, а также возможность осуществления более однородной ионизации за счет применения встречных пучков фотонов делает данную систему накачки достаточно эффективной и перспективной.

Необходимо отметить, что благодаря применению фотонных пучков (электрически нейтральных) отсутствует обратное воздействие магнитного поля объемного разряда на прохождение ионизирующего излучения. Это позволяет создавать импульсные лазеры с любым заданным объемом активной среды с повышенным давлением ( р ³ I атм). Известно, что в электроионизационных крупномасштабных лазерах, предназначенных для исследований в области лазерного термояда, не удалось получить заданную энергию излучения из-за воздействия собственного магнитного поля объемного разряда на траекторию быстрых электронов.

Дальнейшее развитие работ, связанных с фотоионизационной системой накачки, может идти по пути оптимизации параметров УФ источника и выбора режимов поддержания электрического поля в объемном разряде. В режиме "дежурного" напряжения на электродах газоразрядной камеры предельное значение параметра Е/р = 5-7 кВ/см атм в зависимости от рода присадки. Представляет интерес исследование режимов накачки в более широком диапазоне Е/Р за счет перехода к импульсному питанию объемного разряда. Другая возможность развития работ связана как с повышением интенсивности коротковолнового УФ излучения, так и с увеличением энергии фотонов до уровня Еф ~ 20 эВ. В этом случае возможна ионизация инертных газов (Хе, Kr, Ar) и поиск на этой основе новых лазерных сред, генерирующих в более коротком диапазоне длин волн.

Экспресс-инактивация микроорганизмов

Вопросам стерильности в медицине и современных производствах уделяется самое пристальное внимание. Например, стерилизация СБИС перед упаковкой в корпус сохраняет элементы микроэлектроники от окислительных процессов и обеспечивает их длительный ресурс работы в течение десятков лет. Стерилизация с помощью УФ в отличие от стерилизации химикатами действует на все микроорганизмы. Биологический эффект УФ излучения зависит от его спектра, а время инактивации микроорганизмов от интенсивности источника.

В настоящее время в медицине, биологии и микроэлектронике широко применяются источники УФ излучения на основе парортутных ламп низкого давления [15]. Эти бактерицидные лампы имеют высокий коэффициент полезного действия, однако их спектр испускания, сосредоточенный в линии λ= 254 нм достаточно хорошо согласован лишь со вторым более слабым пиком фотопоглощения ДНК микроорганизмов, рис.7, интенсивность УФ излучения ограничена из-за самопоглощения в парах ртути, наличие ртути делает их экологически опасными устройствами.

Рис. 5. Фотоионизационная система возбуждения лазерных и плазмохимических сред. При работе со смесью N2 : NH3 (0,05 %), р = 05 - 1 атм, достигнут удельный энерговклад: W = 0,5 - 0,6 Дж/см3∙атм при Е/р = 5-7 кВ/см.атм.

  

    а.                                                           б.                                                           в.

Рис. 6. Хаpaктерные осциллограммы импульсов ионизации, накачки и генерации (фотоионизационный лазер [1]): а.- импульсы УФ излучения и тока фотоионизационного разряда при f =10 кГц; б. - импульсы разрядного тока и генерации СО2 - лазера в моноимпульсе; в. - в цуге импульсов, следующих с частотой f =10 кГц (в). Присадка - NH3.

Исходя из анализа спектров фотопоглощения ДНК, рис. 7, были разработаны плазменные источники УФ с соответствующим спектром испускания, рис. 7. Повышенная бактерицидная эффективность УФ излучения, согласованного с первым пиком поглощения ДНК, была проверена при воздействии на тест-объект (кишечная палочка E-coli) излучения ArF - эксимерного лазера (l=193 нм) [17].

Рис. 7. Хаpaктерный спектр фотопоглощения ДНК микроорганизмов [16]

Рис. 8. Спектр излучения микрошнуров плазмы при работе линейных источников УФ в атмосфере окружающего воздуха.

Опытный образец экспресс-стерилизатор на базе медицинской коробки типа КФ-3 представлен на рис. 9. В качестве плазменного УФ излучателя использовались 8 линейных источников ультрафиолета, расположенных равномерно на внутренней стенке корпуса стерилизатора. Излучение от всех линеек направлено к центру коробки и пронизывает весь рабочий объем стерилизатора. Обpaбатываемый инструментарий размещался на специальном держателе, устанавливаемом в рабочем объеме стерилизатора.

При испытаниях в качестве обеззараживаемого объекта использовался музейный штамм кишечной палочки М-17. Испытания проводились с концентрацией 107 микробных клеток в 1 мл жидкости при нанесении на поверхность металлического стержня примерно в 0,005 мкл исходного раствора. Обработка обеззараживаемого объекта в предложенном экспресс-стерилизаторе в течение 5 секунд вызвала гибель 99,3 % микробных клеток, 10 секунд - 99,8 %, 30 секунд - 99,99 %, 1 минуты - 100 % микробных клеток по сравнению с контрольным высевом на пластинки с питательной средой, рис. 10.

Рис. 9. Экспресс-стерилизатор на базе медицинской коробки КФ-3. Длительность вспышки УФ излучения - 1 мкс, частота следования - 1 кГц, потрeбляемая мощность - 180 Вт.

Рис. 10. Динамика инактивации микроорганизмов в зависимости от дозы УФ.

t1 = 0 c, t2 = 5 c, t3 = 10 c, t4 = 20 c, t5 = 30 c, t6 = 60 c.

Заключение

В процессе исследований использовались лабораторные образцы источников УФ излучения, получены достаточно интересные и перспективные результаты. В тоже время требуется достаточно большая инженерная проработка конструкций, чтобы привлечь внимание заказчиков в промышленности.

Работа поддержана грантом РФФИ № -07-08-00683.

СПИСОК ЛИТЕРАТУРЫ:

  1. Абросимов Г.В., Рахимов А.Т., Саенко В.Б. и др. Использование импульсно-периодических фотоионизационных разрядов для возбуждения квазинепрерывных газовых лазеров. Квантовая электроника. т. 12, № 11, c. 2256-2263 (1985).
  2. Ахманов А.С., Саенко В.Б., Ястребов А.А. и др. Лазерный комплекс для специализации интегральных схем // Электронная промышленность. № 4, с. 42 (1992).
  3. Торховский В.Н., Лихтерева Н.М., Саенко В.Б. К вопросу об использовании УФ/озон технологии. Наука и технология углеводородов. № 4, с. 38-47 (2000).
  4. Дамбраускас С.Г., Рахимов А.Т., Саенко В.Б. Широкоапертурный источник ультрафиолета для терапии и экспресс-стерилизации медико-биологических объектов. Медицинская физика. № 11, часть VIII., с. 55-56 (2001).
  5. С.Г. Дамбраускас, А.Т. Рахимов, В.Б. Саенко, А.М. Юдин, Б.П. Яценко. Физические особенности использования источников УФ излучения и озона в системах водоподготовки. В кн.: Физические проблемы экологии (экологическая физика): Сборник научных трудов/ Под ред. В.И.Трухина, Ю.А. Пирогова, К.В. Показеева. - М.: МАКС Пресс, № 13, с. 167 - 175 (2005).
  6. Е.Н. Савинов. Фотокаталитические методы очистки воды и воздуха. Соросовский образовательный журнал, том 6, стр.52-56 (2006).
  7. Иванов В.В., Попов Н.А., Саенко В.Б. и др. Исследование процессов образования и гибели озона при фотолизе кислорода в камере ВУФ-озонатора. Письма в ЖТФ, т. 27, вып. 1, с. 65-71 (2001).
  8. Глотов Е.П., Дегтярев А.Г., Розанов В.Б., Свириденко Ю.П. Электронная пушка с фотокатодом для электроионизационных лазеров. Квантовая электроника. т. 3, № 10, c. 2181-2186 (1976).
  9. Иванов В.В., Рулев Г.Б., Саенко В.Б. Применение излучающих микрошнуров плазмы для создания открытых широкоапертурных источников УФ. Письма в ЖТФ, т. 21, вып. 7, с. 65-68 (1995).
  10. В.Б. Саенко. Импульсно-периодический широкоапертурный источник ультрафиолетового излучения на основе матрицы микрошнуров плазмы. Патент РФ на изобретение № 2326463 от 10.06.2008.
  11. А.Ф. Александров, А.А. Рухадзе. Физика сильноточных электроразрядных источников света. Москва. Атомиздат, 1976.
  12. Абросимов Г.С., Польский М.М., Саенко В.Б. Использование лазерной среды для фотографирования поверхности, закрытой слоем плазмы. Квантовая электроника, т. 15, № 3, с. 640-641(1988).
  13. Велихов Е.П., Письменный В.Д., Рахимов А.Т. Несамостоятельный газовый разряд, возбуждающий непрерывные СО2-лазеры. УФН,т.122, вып. 3, с. 419-502 (1972).
  14. Галактионов И.И., Горелов В.Ю., Подмошенский И.В. Электрические и генерационные хаpaктеристики фотоионизационного СО2-лазера. Квантовая электроника, т. 3, № 12, с. 2570-2575 (1978).
  15. Рабек Я. Экспериментальные методы в фотохимии и фотофизике. Москва, «Мир», т.2, 1985.
  16. Бенсассон Р. и др. Флеш-фотолиз и импульсный радиолиз. Москва, «Мир», 1987.
  17. В.Ю.Гусев, А.Т.Рахимов, Г.Б.Рулев, В.Б.Саенко, А.А.Ястребов. Бактерицидные установки для медицины на основе плазменных источников ультрафиолетового излучения и озона. Конверсия, № 6, с.41-43 (1993).


ПРИДНЯ МИХАИЛ ВАСИЛЬЕВИЧ

ПРИДНЯ МИХАИЛ ВАСИЛЬЕВИЧ Статья в формате PDF 168 KB...

21 03 2023 17:28:46

ЗИНЧЕНКО СЕРГЕЙ ИВАНОВИЧ

ЗИНЧЕНКО СЕРГЕЙ ИВАНОВИЧ Статья в формате PDF 75 KB...

18 03 2023 8:43:49

ОЗОНОТЕРАПИЯ В ГНОЙНОЙ ХИРУРГИИ

ОЗОНОТЕРАПИЯ В ГНОЙНОЙ ХИРУРГИИ Статья в формате PDF 110 KB...

16 03 2023 9:24:39

ПРОБЛЕМА ПОЛУЧЕНИЯ ВЫСОКОКАЧЕСТВЕННОГО ФАРФОРА

ПРОБЛЕМА ПОЛУЧЕНИЯ ВЫСОКОКАЧЕСТВЕННОГО ФАРФОРА Статья в формате PDF 113 KB...

15 03 2023 0:30:46

МОДЕЛИРОВАНИЕ ПЕДАГОГИЧЕСКИХ ПРОЦЕССОВ

МОДЕЛИРОВАНИЕ ПЕДАГОГИЧЕСКИХ ПРОЦЕССОВ Статья в формате PDF 100 KB...

14 03 2023 14:28:24

ВЛИЯНИЕ СОЧЕТАНИЙ ВИТАМИНОВ И ФИТОГОРМОНОВ НА УЛУЧШЕНИЕ РОСТА И МЕТАБОЛИЗМА ТОМАТА ПРИ ЗАСОЛЕНИИ

ВЛИЯНИЕ СОЧЕТАНИЙ ВИТАМИНОВ И ФИТОГОРМОНОВ НА УЛУЧШЕНИЕ РОСТА И МЕТАБОЛИЗМА ТОМАТА ПРИ ЗАСОЛЕНИИ Замачивание семян и опрыскивание вегетирующих растений томата растворами сочетаний витаминов: пантотеновая кислота–тиамин и фитогормонов: цитокинин–гибберелловая кислота, и совместным их сочетанием снижает токсическое действие хлоридного засоления, повышая всхожесть семян, рост проростков, стeбля, размеры листьев, интенсивность фотосинтеза и накопление общего белка. Наиболее эффективно во всех случаях комплексное сочетание витаминов с фитогормонами. ...

11 03 2023 13:39:50

«ПОСЛЕДСТВИЯ МОДЕРНОСТИ» В ФИЛОСОФИИ А. ГИДДЕНСА

«ПОСЛЕДСТВИЯ МОДЕРНОСТИ» В ФИЛОСОФИИ А. ГИДДЕНСА Статья в формате PDF 125 KB...

06 03 2023 11:41:13

ФИЗИОЛОГИЯ РАЗВИТИЯ СОСУДИСТОГО РУСЛА

ФИЗИОЛОГИЯ РАЗВИТИЯ СОСУДИСТОГО РУСЛА Статья в формате PDF 112 KB...

03 03 2023 15:51:43

ХАРАКТЕРИСТИКА РЕПАРАТИВНО-АДАПТИВНОЙ АКТИВНОСТИ ЖИРНЫХ РАСТИТЕЛЬНЫХ МАСЕЛ В ЭКСПЕРИМЕНТЕ

ХАРАКТЕРИСТИКА РЕПАРАТИВНО-АДАПТИВНОЙ АКТИВНОСТИ ЖИРНЫХ РАСТИТЕЛЬНЫХ МАСЕЛ В ЭКСПЕРИМЕНТЕ Одинаково назначаемые одни и те же лекарственные средства могут действовать на организм различных людей соответственно неодинаково. Каждый уважающий себя и пациента врач стремится к такому клиническому подходу в свете фармакологии и медицины, что каждый человек мог извлечь из схемы лечения максимальную пользу и минимальный побочный эффект, говоря иным образом, подходить к терапии пациента индивидуально. Но принципиально это стало возможно после расшифровки генома человека. Отличие хромосомных наборов у женщины и мужчины состоит в том, что они имеют разные пoлoвые хромосомы. Женский пол гомогаметный — в кариотипе отсутствует Y-хромосома, и пара пoлoвых хромосом представлена двумя X-хромосомами. Хромосомный набор мужчины содержит две разные пoлoвые хромосомы, X и Y. А значит и применяемые фитопрепараты на основе жирных растительных масел по-разному могут действовать на мужской и женский организм. ...

01 03 2023 16:22:24

Анализ АТФ-зависимых и кальциевых механизмов в реализации нейротропного действия аспирина и его производных

Анализ АТФ-зависимых и кальциевых механизмов в реализации нейротропного действия аспирина и его производных Статья посвящена исследованию механизмов нейротропного действия аспирина, ацетилсалицилатов кобальта и цинка. Показано, что наличие аденозинтрифосфата во внеклеточном прострaнcтве существенно модифицирует нейротропные эффекты салицилатов. Сочетанное приложение аденозинтрифосфата с аспирином устраняет угнетение импульсной активности нейронов, вызванное индивидуальным раствором этого препарата, а совместная экспозиция аденозинтрифосфата с ацетилсалицилатами кобальта и цинка, наоборот, усиливает их активирующие эффекты. При блокировании CdCl2 и BaCl2 поступления Са2 + в нейроплазму из внеклеточной среды и внутриклеточных депо выявлено, что кальциевые механизмы не участвуют в нейротропных эффектах исследуемых салицилатов. ...

23 02 2023 15:20:32

ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ХРОМОВОГО ДУБЛЕНИЯ

Статья в формате PDF 132 KB...

19 02 2023 18:36:27

МИГРАЦИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ ЧЕРЕЗ ВРЕДНЫЕ ПРИВЫЧКИ

МИГРАЦИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ ЧЕРЕЗ ВРЕДНЫЕ ПРИВЫЧКИ Статья в формате PDF 110 KB...

17 02 2023 3:43:51

ЛИМФОИДНЫЕ ИЛИ КРОВЕТВОРНЫЕ ОРГАНЫ?

ЛИМФОИДНЫЕ ИЛИ КРОВЕТВОРНЫЕ ОРГАНЫ? Статья в формате PDF 172 KB...

14 02 2023 12:29:47

К ВОПРОСУ О ДЕФЛЯЦИИ И ФИЗИЧЕСКОЙ ЭРОЗИИ ГУМУСА

К ВОПРОСУ О ДЕФЛЯЦИИ И ФИЗИЧЕСКОЙ ЭРОЗИИ ГУМУСА Статья в формате PDF 109 KB...

07 02 2023 14:58:22

СОВРЕМЕННЫЕ ТЕНДЕНЦИИ В ИЗУЧЕНИИ СТРУКТУРНЫХ ПРЕОБРАЗОВАНИЙ ПИЩЕВАРИТЕЛЬНОЙ СИСТЕМЫ В ЗАВИСИМОСТИ ОТ ТИПОВ ПИТАНИЯ В ЭКСПЕРИМЕНТЕ

СОВРЕМЕННЫЕ ТЕНДЕНЦИИ В ИЗУЧЕНИИ СТРУКТУРНЫХ ПРЕОБРАЗОВАНИЙ ПИЩЕВАРИТЕЛЬНОЙ СИСТЕМЫ В ЗАВИСИМОСТИ ОТ ТИПОВ ПИТАНИЯ В ЭКСПЕРИМЕНТЕ Изучено становление лимфоидного аппарата и морфология органов пищеварительного тpaкта в зависимости от смены питания при создании экспериментальной модели. Исследованы 3 группы белых крысят линии «Вистар», из которых 2 группы - экспериментальные, 3-я - контрольная. Крысята получали естественное, смешанное и искусственное вскармливание. Установлены морфо-функциональные изменения в стенке тонкой, толстой кишки, желудка, паренхиме печени, охватывающие 3 стадии процесса адаптации к хаpaктеру питания. ...

03 02 2023 22:17:10

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::

АНАТОМИЯ УРЕТРОВЕЗИКАЛЬНОГО СЕГМЕНТА И ПРЕДСТАТЕЛЬНОЙ ЖЕЛЕЗЫ У МУЖЧИН, ОТНОСЯЩИХСЯ К РАЗЛИЧНЫМ РАСАМ

Проведено исследование 63 препаратов уретровезикального сегмента и предстательной железы мужчин первого зрелого периода, относящихся к различным расам: европеоидам и монголоидам. Результаты: 1. межмочеточниковая складка Мерсье, расстояние от внутреннего отверстия уретры до устья мочеточника, площадь треугольника Льето достоверно больше у монголоидов при отсутствии достоверной разницы показателей «уретрального» угла треугольника Льето. 2. уретровезикальный угол, длина супрамонтанной части простатического отдела уретры и длина всего простатического отдела уретры у монголоидов достоверно больше. 3. семенной бугорок у представителей монголоидной расы в 85,7% представлял собой утолщение центральной складки простатического отдела уретры, наличие простатической маточки не зарегистрировано ни в одном случае. Семенной бугорок представителей европеоидной расы был более выражен и представлял собой анатомическое образование бόльшими размерами, простатическая маточка зарегистрирована в 60% случаев. 4. общий объем простаты у европеоидов и монголоидов не отличался, однако, центральная ее доля у монголоидов достоверно больше, а переходная достоверно меньше.

Анализ АТФ-зависимых и кальциевых механизмов в реализации нейротропного действия аспирина и его производных

Статья посвящена исследованию механизмов нейротропного действия аспирина, ацетилсалицилатов кобальта и цинка. Показано, что наличие аденозинтрифосфата во внеклеточном прострaнcтве существенно модифицирует нейротропные эффекты салицилатов. Сочетанное приложение аденозинтрифосфата с аспирином устраняет угнетение импульсной активности нейронов, вызванное индивидуальным раствором этого препарата, а совместная экспозиция аденозинтрифосфата с ацетилсалицилатами кобальта и цинка, наоборот, усиливает их активирующие эффекты. При блокировании CdCl2 и BaCl2 поступления Са2 + в нейроплазму из внеклеточной среды и внутриклеточных депо выявлено, что кальциевые механизмы не участвуют в нейротропных эффектах исследуемых салицилатов.