ИСПОЛЬЗОВАНИЕ ГИСТОГРАММНЫХ ОЦЕНОК В ЗАДАЧАХ РАСПОЗНАВАНИЯ > Полезные советы
Тысяча полезных мелочей    

ИСПОЛЬЗОВАНИЕ ГИСТОГРАММНЫХ ОЦЕНОК В ЗАДАЧАХ РАСПОЗНАВАНИЯ

ИСПОЛЬЗОВАНИЕ ГИСТОГРАММНЫХ ОЦЕНОК В ЗАДАЧАХ РАСПОЗНАВАНИЯ

Котов В.В. Статья в формате PDF 257 KB Современные технологии проектирования информационно-измерительных систем (ИИС) различного назначения все больше ориентируются на повышение степени их «интеллектуальности». Это вызвано стремлением разработчиков упростить эксплуатацию подобных систем, повысить эффективность их функционирования, расширить сферы применения. С другой стороны развитие элементной базы (совершенствование хаpaктеристик цифровых сигнальных процессоров, устройств хранения информации, датчиков первичных сигналов и т.п.), позволяет решать в реальном времени всё более сложные в вычислительном отношении задачи. Одной из таких задач, с которыми в той или иной степени сталкивается любая интеллектуальная система, является задача распознавания образов. Базовой операцией в этом случае часто является обнаружение в первичных наблюдаемых сигналах некоторых хаpaктерных признаков (элементов, событий), последующая интерпретация которых позволит системе оценить состояние наблюдаемого объекта (сцены) и принять решение о дальнейших действиях.

Природа и хаpaктер информативных признаков, используемых при решении задач распознавания, могут быть самыми различными - спектральные плотности эталонных сигналов, автокорреляционные функции, средние значения и т.п. [1]. В том числе достаточно широко используются гистограммные оценки плотностей распределения вероятностей появления значений сигналов, не требующие значительных вычислительных затрат. В зависимости от физической природы сигнала такие оценки могут интерпретироваться по-разному. Например, в системах технического зрения, где в качестве первичного источника информации используются цифровые модели изображений, такие гистограммы хаpaктеризуют распределение вероятностей появления пикселей с заданным уровнем яркости, или, в многомерном случае, с заданным цветовым оттенком.

Оценка плотности распределения по гистограмме будет являться случайной величиной, распределение которой должно зависеть от объёма выборки отсчётов сигнала, по которой формируется эта оценка, а также, возможно, от ряда других факторов. Поэтому для принятия решения о целесообразности её использования как информативного признака, необходимо установить вид этого распределения и его основные параметры.

Пусть  -  сигнал, воспринимаемый ИИС, подвергшийся дискретизации и квантованию. Здесь η - Nd - мерный обобщённый аргумент, определяющий положение текущего отсчёта в сигнальной области (прострaнcтве, времени, спектральной зоне и т.п.). Каждый отсчёт может принимать одно из конечного множества значений , где n - число уровней квантования. Если исходный непрерывный сигнал описывался плотностью распределения , то дискретная последовательность будет описываться рядом распределения .

Для вычисления локальной оценки этого ряда в некоторой точке , выделим в её окрестности область-апертуру заданных размеров и формы, по которой будет вычисляться гистограмма .

Пусть мощность множества отсчётов сигнала, ограниченных апертурой, равна N. Перенумеруем последовательно рассматриваемые отсчёты: . Элемент гистограммы hi по определению представляет собой частоту появления отсчётов со значением, равным xi, т.е.  , где  - число отсчётов, равных  .

С ростом N частоты hi сходятся по вероятности к элементам ряда распределения , однако для любого конечного значения N величины hi будут являться случайными. Для принятия решения о целесообразности использования оценки H в задаче распознавания, необходимо выяснить хаpaктер и параметры законов распределения величин hi. Можно показать, что при рассмотрении некоррелированных сигналов, или использовании достаточно больших апертур распределение hi является биномиальным.

Для доказательства рассмотрим процесс формирования величины hi. Анализ j-го отсчёта сигнала является случайным опытом с парой возможных исходов: попадание значения сигнала в i-ый уровень квантования с вероятностью , и непопадание с вероятностью . Множество  можно интерпретировать как серию S, состоящую из N опытов принимающую один из 2N возможных исходов с вероятностями:

По аналогии с булевыми векторами будем называть весом серии Sik число , равное числу первых исходов в этой серии.

Разобьём множество возможных исходов серий опытов  на N+1 подмножество - группы серий {Gil}, l=0,K,N, элементы которых имеют равный вес. Вероятность появления любой серии Sik, принадлежащей группе Gil, будет равна .

Число серий, относящихся к -ой группе, устанавливается из комбинаторных соображений, и равно числу сочетаний . Таким образом, суммарная вероятность всех серий, принадлежащих группе , описывается выражением:

.

Элемент hi, являющийся частотой появления отсчётов со значением xi, представляет собой дискретную случайную величину, принимающую одно из множества значений . Вес серии, отнесённый к её длине, имеет размерность частоты появления отсчёта xi, при этом p(Gil) представляет собой ни что иное, как искомый ряд распределения вероятностей , т.е.

          (1)

Таким образом, первоначальное утверждение о хаpaктере ряда распределения hi справедливо.

В отличие от схемы Бернулли при анализе гистограмм интерес представляют не абсолютные числа положительных исходов, а их относительные частоты . При этом несколько модифицируются выражения для математического ожидания  и дисперсии .

В частности можно показать, что математическое ожидание найденного ряда распределения будет равно

,                   (2)

а дисперсия равна

.(3)

Зависимости (1-3) позволяют определить диапазон, в который будут попадать оценки плотности распределения  по гистограмме H для заданного объёма выборки и априорных вероятностей появления значений сигнала. На рис. 1 показан пример разброса оценок при нормальном распределении .

Таким образом, при ограниченном размере апертуры элементы hi гистограммы будут распределены биномиально, а их математическое ожидание будет равно априорной вероятности появления в сигнале отсчётов со значением xi, т.е. . Дисперсия элементов hi убывает с ростом объёма выборки N, т.е. увеличение размеров апертуры делает оценку ряда  по гистограмме статистически более обоснованной. Найденные зависимости позволяют определить целесообразность использования гистограммных оценок при решении задачи распознавания.

Литература

  1. Ларкин Е.В., Котов В.В. Особенности идентификации событий методами вейвлет-анализа. // Известия Тульского государственного университета. Серия: Математика. Механика. Информатика. Том 7. Вып. 3. Информатика - Тула: изд-во ТулГУ, 2001. - 200 с. (С. 96-103)

Рис. 1. Пример разброса гистограммных оценок при нормальном распределении значений сигнала



СЕМАНТИКА ИНФОРМАЦИОННЫХ ЕДИНИЦ

СЕМАНТИКА ИНФОРМАЦИОННЫХ ЕДИНИЦ Статья в формате PDF 103 KB...

14 04 2024 22:31:11

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ФИЗИЧЕСКОЙ НАГРУЗКИ РАЗЛИЧНОЙ НАПРАВЛЕННОСТИ НА АНТРОПОМЕТРИЧЕСКИЕ ПОКАЗАТЕЛИ У ЖЕНЩИН РАЗНЫХ ВОЗРАСТНЫХ ГРУПП С ИЗБЫТОЧНОЙ МАССОЙ ТЕЛА

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ФИЗИЧЕСКОЙ НАГРУЗКИ РАЗЛИЧНОЙ НАПРАВЛЕННОСТИ НА АНТРОПОМЕТРИЧЕСКИЕ ПОКАЗАТЕЛИ У ЖЕНЩИН РАЗНЫХ ВОЗРАСТНЫХ ГРУПП С ИЗБЫТОЧНОЙ МАССОЙ ТЕЛА Проведен анализ эффективности различных типов фитнес-программ в коррекции избыточной массы тела женщин юношеского и зрелого возраста. Применяемые физические нагрузки отличались хаpaктером нагрузки и наличию/отсутствию компонента коррекции питания. Исследовали антропометрические показатели, ИМТ, определяли содержание жировой массы в организме методом калипометрии в динамике 6-мecячного тренировочного цикла. Проводили промежуточные исследования: в середине, через 3 месяца от начала тренировочного цикла. В исследовании приняли участие 93 пpaктически здоровые женщины с избыточной массой тела, не имеющие эндокринных заболеваний и противопоказаний к занятиям физической культурой. Выделены группы в зависимости от типа программы (I, II), а также подгруппы (Ia, IIa) в зависимости от возраста: 18–21 год (I и II, n = 17 и n = 17, соответственно) и 36–45 лет (Ia, IIa, n = 30 и n = 29, соответственно). Показана динамика и статистическая значимость различий в группах, проведен сравнительный анализ между группами. Выявлена более высокая физиологическая эффективность программы I, базирующейся на смешанном хаpaктере тренировки, многовариантной схеме упражнений с мониторированием и коррекцией хаpaктера питания. ...

11 04 2024 15:57:34

ПУТИ ОПТИМИЗАЦИИ ХИРУРГИЧЕСКОГО ЛЕЧЕНИЯ ПАЦИЕНТОВ С ДВУХСТОРОННИМИ ПАХОВЫМИ ГРЫЖАМИ

ПУТИ ОПТИМИЗАЦИИ ХИРУРГИЧЕСКОГО ЛЕЧЕНИЯ ПАЦИЕНТОВ С ДВУХСТОРОННИМИ ПАХОВЫМИ ГРЫЖАМИ Вентральная грыжа – одно из наиболее распространенных хирургических заболеваний, которым страдают 5–7% населения земного шара. Довольно значительный сегмент среди грыж живота занимают паховые грыжи двухсторонней локализации, что представляет собой обособленную проблему современной герниологии. По данным отечественных и зарубежных исследователей на долю больных с контралатеральными паховыми грыжами приходится до15% от всех больных грыжей паховой локализацией. ...

29 03 2024 14:52:46

ЛИТЕРАТУРНОЕ КРАЕВЕДЕНИЕ

ЛИТЕРАТУРНОЕ КРАЕВЕДЕНИЕ Статья в формате PDF 99 KB...

28 03 2024 21:25:45

ДЕПО-СИНЕРГЕТИКА СНИЖЕНИЯ ХАОТИЗАЦИИ ПРОГНОЗИРУЕТ И ОБОСНОВЫВАЕТ НОВЫЕ МЕТОДЫ ЛЕЧЕНИЯ КАРДИОСКЛЕРОЗА

ДЕПО-СИНЕРГЕТИКА СНИЖЕНИЯ ХАОТИЗАЦИИ ПРОГНОЗИРУЕТ И ОБОСНОВЫВАЕТ НОВЫЕ МЕТОДЫ ЛЕЧЕНИЯ КАРДИОСКЛЕРОЗА В работе предложена математическая модель энергетического метаболизма. Согласно авторской метаболической реконструкции патобиохимии сердца, в модели предполагается, что в основе кардиосклероза (возникновения нерабочих участков в миокарде, усиливающих сердечную недостаточность) лежит аутовоспалительный процесс на базе медленного (недели, годы) «неправильного» взаимодействия депо углеводов и жиров. Модель позволяет сформулировать предсказание, что при определенных медленных сценариях тренировки сердца и защите его от свободных радикалов при стрессе цитопротекторами и пептидотерапией могут возникать снижение хаоса и условия прекондиционирования, тесно связанные с условиями для обновления клеток в сердце на базе стволовых клеток и камбия. Клинические исследования проф. А.Э. Горбунова; проф. А.Н. Флейшмана, д.п.н. Греца Г.Н. подтверждают модельную гипотезу. ...

27 03 2024 6:32:23

ВЕДУЩИЙ МЕХАНИЗМ ИММУНОПАТОЛОГИЧЕСКОГО ПРОЦЕССА ПРИ ПСОРИАТИЧЕ-СКОЙ БОЛЕЗНИ

ВЕДУЩИЙ МЕХАНИЗМ ИММУНОПАТОЛОГИЧЕСКОГО ПРОЦЕССА ПРИ ПСОРИАТИЧЕ-СКОЙ БОЛЕЗНИ С целью уточнения хаpaктера иммунопатологического процесса при псориатической болезни и выяснения аутоиммунного механизма воспаления авторами проведено клинико-иммунологическое обследование 132 больных псориатической болезнью. Комплексное иммунологическое обследование пациентов с определением содержания органоспецифических и органонеспецифических аутоантител к различным тканевым и органным антигенам позволило определить аутоиммунный тип иммунной патологии как один из ведущих механизмов воспаления при данной патологии. ...

24 03 2024 7:14:45

ТУЧНЫЕ КЛЕТКИ ЭНДОМЕТРИЯ МАТКИ КРЫС В СИСТЕМЕ ЕЕ БИОАМИНОВОГО ОБМЕНА

ТУЧНЫЕ КЛЕТКИ ЭНДОМЕТРИЯ МАТКИ КРЫС В СИСТЕМЕ ЕЕ БИОАМИНОВОГО ОБМЕНА С помощью микроспектральных флуоресцентно-гистохимических методов в тучных клетках эндометрия тела и шейки матки крыс дифференцированы гистамин, серотонин и катехоламины. Определено содержание указанных моноаминов в различные фазы пoлoвoго цикла. Тучные клетки шейки матки по сравнению с ее телом хаpaктеризуются более высоким уровнем моноаминов. Содержания катехоламинов и серотонина в точках зондирования хаpaктеризуются высокой степенью линейной корреляции во все стадии пoлoвoго цикла. Установлена высокая степень положительного хроносопряжения динамики изменений содержания гистамина в тучных клетках и эпителиоцитах эндометрия. Предполагается, что тучные клетки выступают в качестве регулятора биоаминового обмена в эндометрии в течение пoлoвoго цикла. ...

20 03 2024 20:10:59

СПЛАВ Ti–50,8 ат.% Ni И ТЕХНОЛОГИИ ЖИВЫХ СИСТЕМ

СПЛАВ Ti–50,8 ат.% Ni И ТЕХНОЛОГИИ ЖИВЫХ СИСТЕМ Статья в формате PDF 102 KB...

17 03 2024 0:40:42

БОРЬБА С КОРРУПЦИЕЙ: УРОКИ ИСТОРИИ

БОРЬБА С КОРРУПЦИЕЙ: УРОКИ ИСТОРИИ Статья в формате PDF 268 KB...

12 03 2024 15:38:16

ВЛИЯНИЕ ТЭС-ТЕРАПИИ НА СЛИЗИСТУЮ ОБОЛОЧКУ ЖЕЛУДКА

Изучено влияние трaнcкраниальной электростимуляции на слизистую оболочку желудка. Выделяемые при этом воздействии эндогенные нейропептиды влияют на морфометрические параметры слизистой и на темп синтеза эпителиоцитами муцинов. При интактной слизистой наблюдается эффект гиперплазии ее с увеличением в составе желез мукоцитов. В условиях нарушения статуса слизистой желудка введением цистеамина действие трaнcкраниальной стимуляции прослеживается в увеличении факторов резистентности слизистой. ...

11 03 2024 20:48:21

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::