ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РЕГУЛИРОВАНИЯ ПРОЦЕССОВ СТРУКТУРООБРАЗОВАНИЯ “ЛЕГКИХ” ПЕНОБЕТОННЫХ СМЕСЕЙ (ПОДХОДЫ К МОДЕЛИРОВАНИЮ УСТОЙЧИВОСТИ “ЛЕГКОЙ” ПЕНОБЕТОННОЙ СМЕСИ В ИНДУКЦИОННОМ ПЕРИОДЕ)
В настоящее время в строительстве большое внимание уделяется созданию и применению эффективных утеплителей, что связано с повышением требований к теплозащитным свойствам ограждающих конструкций зданий, установленных СНиП II-3-79**. К числу наиболее перспективных утеплителей относится, в частности, неавтоклавный теплоизоляционный пенобетон, отличающийся эксплуатационной совместимостью с конструкционными материалами, относительно простой технологией производства и распространенностью применяемого (чаще всего - местного) сырья, экологической и пожарной безопасностью, долговечностью и т.д. Его применение особенно востребовано в малоэтажном и сельском строительстве (коттеджи, "теплые" гаражи), для устройства межкомнатных перегородок, наружных стен с использованием керамического кирпича, сайдинга и кругляка (брёвна), чердачных перекрытий и т.п.
Однако часто производимый "легкий" пенобетон (марок D400 и ниже) хаpaктеризуется низким уровнем стабильности основных хаpaктеристик. Водная составляющая (в цементном тесте и в пене) существенно влияет на формирование структуры пенобетона низкой плотности уже на стадии заливки пенобетонной смеси в форму (индукционный период). Именно для "легких" смесей актуальны вопросы нестабильности, потери устойчивости при укладке их в формы, расслоение фаз. Очевидно, что совершенствованием одного технологического процесса не решить проблему стабильности параметров качества пенобетона. В частности, в научных разработках специалистов все еще остаются открытыми вопросы, затрагивающие теоретическое обоснование механизма потери устойчивости "легких" пенобетонных смесей с учетом гидродинамических факторов. Трудность решения подобной задачи связана с многофазностью рассматриваемой пенобетонной системы, высокой степенью нестабильности пенной структуры, полидисперсностью твердой и газовой фаз, коллективными явлениями, происходящими в системе, ее стохастичностью и другими факторами. Таким образом, разработка предложений для решения проблемы нестабильности "легкой" пенобетонной смеси, а, следовательно, и мероприятий по оптимизации неавтоклавной технологии производства теплоизоляционного пенобетона приобретают в настоящее время особую важность и актуальность.
Работы [1-14 и др.] по потере устойчивости пенной структуры показывают, что главная причина этого явления заключается в синерезисе свободной жидкости, происходящем под действием массовых сил. В частности, в [3, 4] рассмотрены частные случаи подобных систем (в основном для вертикального столба пены) и получены математические зависимости по синерезису. Однако реальная пенобетонная структура существенно отличается от классической пенной и, прежде всего - наличием твердой фазы, которая существенно меняет картину и замедляет синерезис по каналам Плато.
Потерю устойчивости легкого пенобетона можно рассматривать как на микроуровне (т.е. отдельной межпоровой перемычке), так и на макроуровне (по отношению к выделенному единичному объему). Решение второй задачи позволило бы, на наш взгляд, определить количественную теоретическую скорость расслоения пенобетонной смеси и выявить влияние на нее различных факторов.
Ценность постановки задачи моделирования устойчивости "легкой" пенобетонной смеси связана с получением модели, которая призвана помочь в прогнозировании поведения пенобетонной системы во время индукционного периода и уточнить технологические рекомендациями по ее производству. Следует отметить, что к эффективным методам моделирования многофазных систем является применение механики взаимопроникающих континуумов.
Анализ научных работ в этом направлении показывает, что трудность моделирования 3-х фазной системы (пенобетонная смесь) связана с оценкой межфазных взаимодействий по границам фаз. Учитывая это, для формирования математической модели в индукционном периоде (до начала схватывания пенобетонной смеси, находящейся в форме) предлагаем рассматривать 2-х фазную модель, включающую:
твердожидкостную несущую фазу, для которой будут справедливы следующие допущения:
- размеры твердых частиц достаточно малы по сравнению с неоднородностями полей концентраций и скоростей;
- между твердыми частицами отсутствуют процессы агрегации, дробления, а также пренебрегаем взаимодействием между ними;
газотвердожидкостную фазу (так называемый комбинированный кластер), которая равномерно распределена по объему системы и для которой также справедливы вышеизложенные допущения.
Действительно, при формировании структуры легкого пенобетона газовая фаза является каркасом, на котором концентрируется твердая фаза (явление бронирования). Твердая фаза, кроме того, удерживается в области газовой поры связанной водой. Так образуется комбинированный кластер из газовой поры (пузыря), твердых частиц и связанной воды. Подобные кластеры образуют пористую систему, по каналам Плато которой стекает свободная вода в процессе расслоения смеси. Присоединение твердых частиц к кластеру будет определяться балансом Ван-дер-ваальсовой, электростатической, расклинивающей составляющими межчастичного взаимодействия, кинетической энергией присоединенной частицы. При значительной кинетической энергии частица может разрушить кластер или под действием свободной воды покинуть его зону. Частицы, не попавшие в такие кластеры, будут утолщать перемычку, т.е. тем самым способствовать увеличению плотности пенобетона или кольматировать поры. Кстати, правомерность перехода к двухфазной системе находит подтверждение, например, в работах В.Н. Феклистова [15] по оценке формирования пенобетонной структуры различной плотности.
Предложенная схема позволяет сформировать подходы к математической модели процесса для изотермических условий. Для формируемой модели будем считать справедливыми, помимо изотермичности, требования монодисперсности фаз, растворения и диффузии газа. Между введенными в рассмотрение выше фазами будем полагать действительными следующие массовые переходы: переход твердых частиц из жидкой фазы на газовый кластер (и наоборот); переход связанной жидкости в свободную (и наоборот). Присвоим несущей фазе индекс 1, а газотвердожидкостной - 2. Рассматриваем движение несущей фазы по капиллярно-пористой системе, в качестве которой будет выступать каркас из упакованных случайным образом кластеров с минимумом энергии их взаимодействия (подобная упаковка хаpaктерна для "легких" теплоизоляционных пенобетонов).
Выделим в исследуемой системе элементарный единичный объем и для каждой из фаз составим:
- уравнения сохранения массы:
В уравнениях (1) и (2): I12T - удельный поток твердых частиц из несущей фазы 1 на поверхность фазы 2; I21T - то же, но в обратном направлении; I21св - удельный поток связанной воды с пузырька в несущую фазу; I12св - то же, но в обратном направлении.
- уравнение изменения импульса несущей фазы 1:
где: V1 и V2 - векторы скоростей фаз;F21 - межфазное трение; ρ1g - массовая сила.
Левая часть в уравнении (3) представляет инерционную силу от ускорения, действующего на фазу: V1 = (V1x , V2y , V3z). Первое слагаемое правой части определяет напряжения в фазе, второе - межфазное взаимодействие по внешним границам фаз и зависящее от (V2 -V1). Третье слагаемое учитывает действие гравитационных сил, а четвертое и пятое - прирост / убыль импульса фаз от присоединенных масс твердых частиц и связанной воды.
- уравнение изменения импульса фазы 2:
где: σ2 - напряжение в дисперсной газотвердой фазе; F12 - межфазное трение.
Последнее слагаемое в уравнении (4) хаpaктеризует прирост импульса за счет присоединенных масс.
Будем считать, что нестационарный режим истечения жидкости представляет собой совокупность микроравновесных состояний, то есть:
Так как движущей силой синерезиса жидкости является гравитационная составляющая g, то целесообразно в дальнейшем ограничиться одномерным случаем (по оси Z). Поскольку индукционный период начинается после: розлива пенобетонной смеси в формы; замедления действия инерционных сил, то ими в дальнейшем упрощении модели можно пренебречь (по сравнению с массовыми силами). Поскольку формирование кластеров обычно заканчивается на этапе приготовления пенобетонной смеси, то присоединенными массами твердых частиц к газовому пузырьку можно пренебречь. Также для упрощения пренебрегаем в математической модели эффектами физико-химической природы (электрокинетические явления, смачиваемость поверхностей и т.п.).
Система уравнений (1-4) после упрощений примет вид:
Последние слагаемые в уравнениях (7) и (8) являются приращениями импульсов фаз за счет перехода связанной воды из фазы 2 в вязкую жидкость фазы 1.
Для нахождения межфазного трения f можно воспользоваться зависимостью:
где: е = a1 / a2 - объемное соотношение фаз; S - удельная поверхность межфазного трения; а - коэффициент фильтрации при синерезисе. Для ячеистой модели:
где: k - суммарная константа Козени-Кармана; μ - вязкость несущей фазы, которую можно определить по формуле Эйнштейна:
μ1 = μж (1+ 5aтж/2a1),
где: μж - вязкость жидкости; aтж - объемная доля твердой фазы в жидкости.
Напряжение в вязкой несущей среде определяется:
где: δkl - символ Кронекера; τkl1 - тензор вязких напряжений; Р1 - давление; еkl1 - тензор скоростей деформаций несущей фазы.
Напряжение в дисперсной фазе в общем виде:
Примеры компрессионной хаpaктеристики дисперсной фазы приведены, например, в [16-19].
Для завершения формирования вышеприведенной модели необходимо добавить граничные условия, основываясь на данных:
- для верхней границы - скорость поступления свободной жидкости к верхней границе равна нулю, то есть V1z = 0;
- на нижней границе раздела жидкости и пенной структуры концентрация дисперсной фазы минимальна, то есть a2→ min.
Наши дальнейшие исследования по разработке модели предполагают анализ ее замыкания, получение численного решения системы дифференциальных уравнений для граничных условий, проведение экспериментальных исследований по анализу устойчивости модельных систем и сравнение полученных данных с теоретическими предположениями.
Данная работа выполнена в рамках тематического плана, финансируемого Федеральным агентством по образованию РФ в 2006 г., тема НИР: "Теоретические основы формирования пористой структуры в наполненных ячеистых бетонах".
СПИСОК ЛИТЕРАТУРЫ:
- Тихомиров В.К. Пены. Теория и пpaктика их получения и разрушения. М.: Химия, 1983.
- Трапезников А.А. Некоторые свойства пленок и пен и вопросы их устойчивости. // Пены. Получение и применение. / Материалы Всесоюзной научно-технической конференции. Часть 1. Физико-химия пен.- М.: 1974. - С.6-37.
- Канн К.Б. Некоторые закономерности синерезиса пен. // Коллоидный журнал.- 1978.- т. 40.- с.858.
- Кротов В.В. Обобщенные уравнения синерезиса. // Коллоидный журнал.- 1984.- т. 4 - с.14.
- Канн К.Б. Капиллярная гидродинамика пен. - Новосибирск: Наука, 1989.
- Волков П.К. Гидродинамика всплывающих пузырей и капель: Автореферат дисс.... д-ра физ.-мат.наук:-Новосибирск, 1992. - 34 с.
- Гудов А.М. Численное моделирование взаимодействия пузыря с различными типами границ в жидкости: Автореферат дисс... канд. физ.- мат. наук: - Кемерово, 1996. - 24 с.
- Сахабутдинов А.Ж. Численное трехмерное моделирование динамики газового пузырька: Автореферат дисс... канд. физ.-мат. наук: - Уфа, 1999. - 19 с.
- Кондратьев С.А. Развитие теоретической базы интенсификации процесса пенной флотации на основе оптимизации гидродинамики и физико-химических свойств поверхности раздела "газ - жидкость": Автореферат дисс... д-ра техн. наук: - М., 2002. - 36 с.
- Хисматуллин Д.Б. Математическое моделирование резонансных явлений в динамике пузырьковых жидкостей: Автореферат дисс... канд. физ.-мат. наук: 05.13.16. -Уфа, 1998. - 23 с.
- Кутателадзе С.С., Стырикович М.А. Гидродинамика газожидкостных систем. - М.: Энергия, 1976. - С.295.
- Гегузин Я.Е. Пузыри - М.: Наука, Физматгиз, библ. «Квант», вып. 46. - 1985.- С. 177.
- Островский Г.М. Прикладная механика неоднородных систем. - СПб.: Наука, 2000. - С. 359.
- Островский Г.М., Некрасов В.А. Математическое моделирование процессов истечения жидкости из пен. // ТОХТ- 1966.- Т.30. - №6. - С.657 - 661.
- Феклистов В.Н. К оценке формирования пенобетонной структуры различной плотности. // Строительные материалы. - 2002.- №10.- С.16.
- Штакельберг Д.И., Сычев М.М. Самоорганизация в дисперсных системах. - Рига: Зинатне, 1990. - 175 с.
- Федоткин И.М. Интенсификация технологических процессов. - Киев: Вища школа, 1979. - 342 с.
- Федоткин И.М., Воробьёв Е.И., Вьюн В.И. Гидродинамическая теория фильтрования суспензий. - Киев: Вища школа, 1986. - 166 с.
- Нигматулин Р.И. Динамика многофазных сред.- М.: Наука, 1987. - 360 с.
Работа представлена на заочную электронную конференцию «Новые технологии, инновации, изобретения», 15-20 июля 2006 г.
Статья в формате PDF 111 KB...
06 10 2024 14:24:25
Статья в формате PDF 115 KB...
05 10 2024 18:58:44
Статья в формате PDF 129 KB...
04 10 2024 6:39:31
Представлены результаты исследования зерновых сушилок в условиях нормального функционирования, а также оценки их динамических хаpaктеристик в виде передаточных функций. Приведены оценки неравномерности поля температуры и влагосодержания зерна, на основании чего делается вывод о необходимости стабилизации количества тепловой энергии подаваемой в сушильную камеру. ...
03 10 2024 12:20:23
Статья в формате PDF 280 KB...
02 10 2024 19:44:19
Статья в формате PDF 544 KB...
01 10 2024 20:54:37
Статья в формате PDF 102 KB...
30 09 2024 10:43:15
Статья в формате PDF 191 KB...
29 09 2024 1:38:29
Статья в формате PDF 133 KB...
28 09 2024 10:41:15
Статья в формате PDF 140 KB...
27 09 2024 6:47:29
Статья в формате PDF 146 KB...
25 09 2024 4:48:39
Статья в формате PDF 109 KB...
24 09 2024 21:58:59
Статья в формате PDF 105 KB...
23 09 2024 14:55:47
Статья в формате PDF 103 KB...
22 09 2024 16:57:36
Артериальная гипертония является одним из главных факторов риска атеросклероза и ишемической болезни сердца (ИБС). Путем сплошного скрининга двух сельских районов проведен анализ распределения показателей артериального давления (АД) в популяции. Исследован хаpaктер питания как фактор риска развития атеросклероза. Был проведен поиск генетических маркеров указанных заболеваний. Показано, что факторами пониженного риска ИБС является носительство аллелей гена АроВ30 и АроВ34, а носительство аллеля е4 АроЕ, аллеля Д и генотипа ДД - факторы повышенного риска данной патологии. ...
20 09 2024 7:41:15
Статья в формате PDF 324 KB...
19 09 2024 12:23:17
Статья в формате PDF 124 KB...
17 09 2024 3:10:10
16 09 2024 14:35:38
Статья в формате PDF 119 KB...
15 09 2024 16:33:46
Статья в формате PDF 127 KB...
14 09 2024 14:18:11
Статья в формате PDF 144 KB...
13 09 2024 19:25:56
Статья в формате PDF 127 KB...
12 09 2024 9:40:41
Статья в формате PDF 119 KB...
11 09 2024 14:24:18
Статья в формате PDF 183 KB...
10 09 2024 22:38:11
Статья в формате PDF 176 KB...
09 09 2024 10:21:51
Статья в формате PDF 217 KB...
08 09 2024 17:57:54
Статья в формате PDF 109 KB...
05 09 2024 20:47:14
Статья в формате PDF 123 KB...
04 09 2024 20:12:43
Статья в формате PDF 101 KB...
03 09 2024 18:27:13
Статья в формате PDF 110 KB...
02 09 2024 21:40:25
Статья в формате PDF 123 KB...
01 09 2024 17:27:47
Статья в формате PDF 129 KB...
31 08 2024 13:13:39
Статья в формате PDF 112 KB...
30 08 2024 1:31:53
Статья в формате PDF 264 KB...
28 08 2024 9:55:21
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::