МОДЕЛИРОВАНИЕ КРУПНОГАБАРИТНОЙ ГАЗОСТАТИЧЕСКОЙ КОЛЬЦЕВОЙ ОПОРЫ С ДИСКРЕТНЫМ ПОДДУВОМ > Полезные советы
Тысяча полезных мелочей    

МОДЕЛИРОВАНИЕ КРУПНОГАБАРИТНОЙ ГАЗОСТАТИЧЕСКОЙ КОЛЬЦЕВОЙ ОПОРЫ С ДИСКРЕТНЫМ ПОДДУВОМ

МОДЕЛИРОВАНИЕ КРУПНОГАБАРИТНОЙ ГАЗОСТАТИЧЕСКОЙ КОЛЬЦЕВОЙ ОПОРЫ С ДИСКРЕТНЫМ ПОДДУВОМ

Долгих Т.Ф. Снопов А.И. Статья в формате PDF 688 KB

Рассмотрим кольцевую газостатическую опору с дискретным поддувом. Внешний радиус опоры равен RH, а внутренний - RB. Полагаем, что зазор между смазываемыми поверхностями постоянен и равен h. Газ в смaзoчный слой опоры попадает под давлением ps через N произвольно расположенных на одной из смазываемых поверхностей питателей типа «простая диафрагма». При этом диаметры питателей могут быть разные: d0j, j = 1, 2, ..., N - диаметры подводящих каналов, а dj, j = 1, 2, ..., N - диаметры «карманов». Поток газа в смaзoчном слое принимается неодномерным, установившимся, ламинарным, изотермическим, а в питателях - одномерным, установившимся, адиабатическим, подчиняющимся законам динамики идеального газа.

Любому потоку вязкого газа между неподвижными параллельными плоскостями соответствует определенная аналитическая функция w(z) комплексного переменного z = x + iy - комплексный потенциал:

 (1)

Комплексный потенциал на границах опоры удовлетворяет условию P = pa, а на границах питателей
Γj - условиям:

 (2)

Из представления комплексного потенциала (1) получаем формулу для определения поля давлений в смaзoчном слое:

 (3)

Расчет кольцевых газостатических опор порой очень затруднителен. В таких случаях для нахождения комплексного потенциала удобно воспользоваться методом конформных отображений и перейти к расчету полосовой опоры. Для этого свяжем с плоскостью опоры систему координат r, φ и введем новую комплексную координату . Конформное отображение дает функция . Тогда кольцевой опоре в фиктивном потоке z соответствует безграничная полоса шириной , на которой расположены N дорожек точечных источников. Диаметры питателей в полосовой опоре равны  для подводящих каналов и  для «карманов». Базовые координаты питателей будут . В - шаг, с которым расположены питатели в каждой дорожке. Полагаем параметры газа и толщину смaзoчного слоя в фиктивном потоке такими же, как и для реального газа. Следовательно, давления в фиктивном потоке в соответствующих точках будут такими, как и в реальном.

Комплексный потенциал фиктивного потока в смaзoчном слое полосовой опоры легко строится методом источников и стоков. В результате получаем:

 (4)

Функции f(z), определяющие комплексные потенциалы потоков в полосе z, которые породили дорожки точечных источников, полагаем известными. μ - динамический коэффициент вязкости, κ - показатель адиабаты Пуассона, pa - давление окружающей среды, as - скорость звука в газе.

Условие (2) и равенство расходов газа через смaзoчный слой и через питатели Qj = Mj, дают систему нелинейных уравнений для определения давлений pdj на кромках питателей и расхода газа Qj. Но нужно помнить, что мы рассматриваем питатели типа «простая диафрагма», поэтому целесообразно применять схему «двойного дросселирования». Это означает, что на входе в «карман» полагаем площадь минимального сечения  и эмпирический поправочный коэффициент , а на выходе из «кармана» - . Тогда для определения давлений на кромках питателей составляем две системы нелинейных уравнений:

 (5.1)

 (5.2)

Здесь

,

q(x) - газодинамическая функция, р1 - отношение давлений на входе в питатель и на выходе.

В этом случае количество газа, поступающего в карман в единицу времени через подводящий канал с диаметром d0j < dj, вычисляется по формуле:

 (6.1)

А количество газа, вытекающего в единицу времени из «кармана» через кольцевую диафрагму под действием давления  находим из равенства:

 (6.2)

Зная расходы газа, строим комплексный потенциал и определяем поле давлений в смaзoчном слое. Далее можно исследовать влияние неравномерного поддува на интегральные хаpaктеристики опоры. При этом расчет может быть произведен для фиктивного потока без возвращения к реальной плоскости, но с использованием якобиана перехода

.

Так, например, несущая способность газостатической кольцевой опоры вычисляется по формуле:

 (7)

Можно в формуле для определения поля давлений вернуться к полярным координатам r, φ (для простоты вычислений) и найти центр давлений как центр параллельных сил:

. (8)

ПРИМЕР. Рассмотрим кольцевую газостатическую опору с внешним радиусом RH = 0,5 м и внутренним - RB = 0,005 м. Возьмем N = 5. Диаметры подводящих каналов равны d0 = [0,002; 0,008; 0,004; 0,01; 0,006] м, а диаметры «карманов» пусть будут в два раза больше, т.е. dj = 2⋅d0j, j = 1, 2, ..., N. Координаты питателей и толщину смaзoчного слоя задают массивы r = [0,1; 0,46; 0,18; 0,34; 0,22] м, φ = [π/12, π/2, 5π/6, 5π/4, 11π/6], h = [0,01; 0,02; 0,03,; 0,04; 0,05] м. Давление на входе в питатели равняется двум атмосферным давлениям, т.е. ps = 2pa. Определим несущую способность и центр давлений этой опоры при данных величинах смaзoчного слоя.

С помощью метода конформных отображений переходим от кольцевой опоры к безграничной полосе ширины L, на которой расположены пять дорожек питателей. Определяем по схеме «двойного дросселирования» поля давлений на кромках питателей и расход газа. Строим комплексный потенциал для течения газа в смaзoчном слое, находим поле давлений.

Зависимость несущей способности (ось ординат, Н) от толщины газового слоя (ось абсцисс, м) показана на графике:

На расположение центра давлений толщина смaзoчного слоя оказывает очень слабое влияние. На исследуемой опоре центр давлений располагается пpaктически в начале координат (xц ≈ -0,003; yц ≈ 10-6).

Список литературы

  1. Снопов А.И. Методические указания к курсу «Динамика вязкой жидкости и газа» часть II - Ростов н/Д.: УПЛ РГУ, 1990. - С. 4-7, 16-26, 28-31.
  2. Снопов А.И., Ларикова Н.А., Миронова Е.В. Моделирование газостатических опор с неравномерным дискретным поддувом // Современные проблемы науки и образования: Материалы конференции. - 2009. - №6. - С. 34-36.


БИОМЕТАЛЛЫ И КАНЦЕРОГЕНЕЗ

БИОМЕТАЛЛЫ И КАНЦЕРОГЕНЕЗ Статья в формате PDF 90 KB...

09 05 2024 22:28:38

ЗНАЧИМОСТЬ ПОЛИТИЧЕСКОЙ КОРРЕКТНОСТИ

ЗНАЧИМОСТЬ ПОЛИТИЧЕСКОЙ КОРРЕКТНОСТИ Статья в формате PDF 308 KB...

08 05 2024 21:30:41

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ДАННЫХ ЭЛЕКТРОЭНЦЕФАЛОГРАФИИ И ИНДУКЦИОННОЙ МАГНИТОЭНЦЕФАЛОГРАФИИ У ПАЦИЕНТОВ С ХРОНИЧЕСКОЙ ИШЕМИЧЕСКОЙ НЕЙРООПТИКОПАТИЕЙ И ГЛАУКОМОЙ

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ДАННЫХ ЭЛЕКТРОЭНЦЕФАЛОГРАФИИ И ИНДУКЦИОННОЙ МАГНИТОЭНЦЕФАЛОГРАФИИ У ПАЦИЕНТОВ С ХРОНИЧЕСКОЙ ИШЕМИЧЕСКОЙ НЕЙРООПТИКОПАТИЕЙ И ГЛАУКОМОЙ Проведен сравнительный спектральный анализ биоэлектрической активности головного мозга по данным электроэнцефалографии (ЭЭГ) и индукционной магнитоэнцефалографии (МЭГИ) пациентов с хронической формой ишемической нейрооптикопатии и глаукомой. Выявлен ряд особенностей, хаpaктеризующих наличие данных видов патологий у исследуемых, проявляющихся десинхронизацией работы полушарий, а так же повышением амплитуды спектральной оценки определенных частотных диапазонов МЭГИ и ЭЭГ. У пациентов с ишемической нейрооптикопатией выявлены признаки усиления тонуса адренорецепторов артериальных сосудов, а так же увеличение амплитуды медленных электрических потенциалов. Наличие глаукомы хаpaктеризовалось усилением тонус адренорецепторов гладкой мускулатуры, а так же ослаблением парасимпатического тонуса вегетативной нервной системы. Сравнительный анализ не показал статистически значимых отличий показателей МЭГИ и ЭЭГ. ...

07 05 2024 1:17:45

ИССЛЕДОВАНИЕ СВОЙСТВ ЙОДСОДЕРЖАЩЕЙ ДОБАВКИ

ИССЛЕДОВАНИЕ СВОЙСТВ ЙОДСОДЕРЖАЩЕЙ ДОБАВКИ Статья в формате PDF 134 KB...

05 05 2024 19:48:52

РОЛЬ МИКРОРНК В РЕГУЛЯЦИИ ЦИРКАДИАННЫХ РИТМОВ У МЛЕКОПИТАЮЩИХ

РОЛЬ МИКРОРНК В РЕГУЛЯЦИИ ЦИРКАДИАННЫХ РИТМОВ У МЛЕКОПИТАЮЩИХ В настоящем обзоре проанализированы и обобщены современные данные о роли микро-РНК (miРНК) в тонкой подстройке циркадианных биологических часов (БЧ) на уровне центрального осциллятора (супрахиазматических ядер гипоталамуса, СХЯ) и в периферических тканях и органах. Обсуждаются механизмы воздействия miРНК (miR-132, miR-216, miR-182, miR-96, miR-122, miR-141, miR-192/94, miR-206) на этапы экспрессии ключевых генов БЧ. Продемонстрировано опосредованное этим влияние miРНК на параметры циркадианного ритма (период, амплитуда, фазовый ответ на внешний световой сигнал), а также участие данных процессов в модуляции физиологических ритмов на более высоких уровнях организации млекопитающих. ...

01 05 2024 15:44:37

МОРФОФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ ПЕЧЕНИ КРОЛИКОВ КАЛИФОРНИЙСКОЙ ПОРОДЫ

МОРФОФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ ПЕЧЕНИ КРОЛИКОВ КАЛИФОРНИЙСКОЙ ПОРОДЫ В последнее время изыскиваются различные кормовые средства, витаминно-минеральные, биологические и другие препараты, которые бы оказывали благотворное влияние на организм животных. Анализ литературных источников показал, что вопросы влияния органического селена на морфофункциональное состояние организма животных (кроликов) выращиваемых в условиях интенсивных технологий полностью не выяснены, в связи с этим была поставлена цель изучить морфофункциональное состояние печени кроликов при использовании органического селена (Сел-Плекс) в составе гранулированного комбикорма в условиях Северного Зауралья. При топографическом исследовании и макроскопическом осмотре печени мы не выявили внешних различий у исследуемых групп. Изученное нами структурно-функциональное состояние печени в опытной группе кроликов, дает основание предполагать, что введение Сел-Плекс положительно влияет на морфофизиологическое состояние печени, что проявляется выраженным дольчатым строением, сохранность паренхиматозных структур печени. ...

30 04 2024 13:11:14

ГЕРМЕНЕВТИЧЕСКИЙ ПОДХОД В ОБУЧЕНИИ МАТЕМАТИКЕ

ГЕРМЕНЕВТИЧЕСКИЙ ПОДХОД В ОБУЧЕНИИ МАТЕМАТИКЕ Статья в формате PDF 474 KB...

23 04 2024 15:36:32

НОВЫЙ МЕТОД ЛЕЧЕНИЯ ХРОНИЧЕСКИХ ДЕРМАТОЗОВ

НОВЫЙ МЕТОД ЛЕЧЕНИЯ ХРОНИЧЕСКИХ ДЕРМАТОЗОВ Статья в формате PDF 120 KB...

22 04 2024 7:58:32

МОРФОГЕНЕЗ НАДКОСТНИЦЫ ДИСТРАКЦИОННОГО РЕГЕНЕРАТА

МОРФОГЕНЕЗ НАДКОСТНИЦЫ ДИСТРАКЦИОННОГО РЕГЕНЕРАТА Статья в формате PDF 100 KB...

20 04 2024 17:54:48

ЛЖЕУЧЕНИЯ И ПАРАНАУКА ХХ ВЕКА. ЧАСТЬ 2

ЛЖЕУЧЕНИЯ И ПАРАНАУКА ХХ ВЕКА. ЧАСТЬ 2 Проведен анализ общепринятых учений и научных теорий, имевших широкую аудиторию в вузах и научно-исследовательских институтах прошлого века. Выявлена недостаточность абстpaктной потенции в мыслительной жизни homo sensus, главная альтернатива которой – эмоциональный мир, чувственность и вера. Свойство верить познающего субъекта не носит хаpaктер религиозности, однако имеет общие с ней основания. Роднит религию и научную веру стремление не понять, а принять смутные представления, сулящие сиюминутную пользу и выгоду, объединяет желание увидеть в таинственном и запредельном нечто к себе доброжелательное, освобождающее от мучительного предназначения думать и, следовательно, уводящее от необходимости работать – работать без самообмана, но эффективно и достойно homo sapiens. ...

19 04 2024 3:37:14

ХЛОР КАК ТОКСИЧЕСКИЙ АГЕНТ

ХЛОР КАК ТОКСИЧЕСКИЙ АГЕНТ Статья в формате PDF 256 KB...

17 04 2024 17:55:12

РОЛЬ АУДИТОРИИ В УЧЕБНОМ ПРОЦЕССЕ

РОЛЬ АУДИТОРИИ В УЧЕБНОМ ПРОЦЕССЕ Статья в формате PDF 108 KB...

13 04 2024 5:16:47

ИЗУЧЕНИЕ ВЕКТОРОВ В ШКОЛЕ. ВОПРОСЫ И ОТВЕТЫ

ИЗУЧЕНИЕ ВЕКТОРОВ В ШКОЛЕ. ВОПРОСЫ И ОТВЕТЫ Статья в формате PDF 250 KB...

12 04 2024 20:53:24

ПЕРФИЛОВ ВЛАДИМИР АЛЕКСАНДРОВИЧ

ПЕРФИЛОВ ВЛАДИМИР АЛЕКСАНДРОВИЧ Статья в формате PDF 122 KB...

07 04 2024 15:33:41

ФЕНОЛОГИЯ И БИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ЗИМНЕЙ ПЯДЕНИЦЫ (OPEROPNTHERA BRUMATA L.) В ПРЕДГОРНОЙ ЗОНЕ РЕСПУБЛИКИ АДЫГЕЯ

ФЕНОЛОГИЯ И БИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ЗИМНЕЙ ПЯДЕНИЦЫ (OPEROPNTHERA BRUMATA L.) В ПРЕДГОРНОЙ ЗОНЕ РЕСПУБЛИКИ АДЫГЕЯ Жизненный цикл зимней пяденицы (Operophtera brumata L.) столь своеобразен, а время появления имагинальной фазы настолько необычно для бабочек, что этот объект всегда привлекал внимание учёных. Интерес усиливается также тем, что зимняя пяденица является массовым вредителем лиственных и древесных пород, значительная часть которых относится к плодовым деревьям. ...

04 04 2024 9:49:34

PROBLEMS OF BIOCHEMICAL INDICATION OF STATUS OF FISHES OF NORTH BASIN

PROBLEMS OF BIOCHEMICAL INDICATION OF STATUS OF FISHES OF NORTH BASIN Статья в формате PDF 127 KB...

01 04 2024 16:50:20

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::