ПЕТРОЛОГИЯ И ГЕОХИМИЯ СУБВУЛКАНИЧЕСКИХ ОБРАЗОВАНИЙ УНИКАЛЬНОГО КУМИРСКОГО Sc-U-TR МЕСТОРОЖДЕНИЯ ГОРНОГО АЛТАЯ > Полезные советы
Тысяча полезных мелочей    

ПЕТРОЛОГИЯ И ГЕОХИМИЯ СУБВУЛКАНИЧЕСКИХ ОБРАЗОВАНИЙ УНИКАЛЬНОГО КУМИРСКОГО Sc-U-TR МЕСТОРОЖДЕНИЯ ГОРНОГО АЛТАЯ

ПЕТРОЛОГИЯ И ГЕОХИМИЯ СУБВУЛКАНИЧЕСКИХ ОБРАЗОВАНИЙ УНИКАЛЬНОГО КУМИРСКОГО Sc-U-TR МЕСТОРОЖДЕНИЯ ГОРНОГО АЛТАЯ

Гусев А.И. 1 Гусев Н.И. 1
1 Алтайская государственная академия образования им. В.М. Шукшина
Для уникального Кумирского скандий-уран-редкоземельного месторождения впервые описаны субвулканические образования, сформировавшиеся в антидромной последовательности от гранитов до долеритов. Более ранние гранит-порфиры и аляскит-порфиры слагают Кумирский шток, в контакте с которым образовались сложнее по составу метасоматиты от фельдшпатоидов до пропилитов. Гранитоиды формировались в процессе частичного плавления мантийного субстрата(кварцевые эклогиты) и относятся к А-типу (анорогенных гранитоидов), а дайки долеритов обнаруживают в своём образовании мантийно-коровое взаимодействие: смешение мантийной базальтовой магмы и корового материала. Статья в формате PDF 470 KB петрологиягеохимиягранит-порфирыаляскитыанорогенные гранитоидыдолеритыантидромная последовательностьмантийно-коровое взаимодействие 1. Гусев А.И., Гусев Н.И., Ефимова И.В. // Руды и металлы. – 2009. – № 6. – С. 21–28. 2. Гусев А.И., Гусев Н.И., Ефимова И.В., Андросова С.А., Жданова С.И., Красова А.С // Природные ресурсы Горного Алтая. – Горно-Алтайск, 2009. – № 2. – С. 41–50. 3. Anders E., Greevesse N. // Geochim. Cosmochim. Acta. – 1989. – Vol. 53. – P. 197–214. 4. Barbarin, B. // Lithos. – 1999. – Vol. 46. – P. 605–626. 5. Irber W. // Geochim Cosmochim Acta. – 1999. – Vol. 63. – №3/4. – P. 489–508.

Кумирское рудное поле расположено в пределах Холзунско-Чуйского тектонического блока и приурочено к наложенной Коргонской вулкано-плутонической структуре (ВТС). В Коргонской ВТС вулканический разрез имеет трёхчлeнное строение. Нижним юнитом этого разреза является кумирская серия, включающая ергольскую и кумирскую свиты. Кумирская свита сложена эффузивными и вулканокластическими породами, которые, большей частью, тяготеют к низам разреза. Cубвулническими аналогами этих эффузивов являются Кумирский шток гранитоидов и дайки долеритов, обнаруженные нами в последние годы [1, 2]. С субвулканическими образованиями парагенетически связывается формирование уникального комплексного скандий-уран-редкоземельного месторождения с редкими металлами [2].

Интрузивные породы в рудном поле представлены субвулканическим штоком гранит-порфиров и аляскит – порфиров, сформировавшихся в две последовательные фазы. Шток имеет площадь около 3 км2 и вытянут в северо-восточном направлении, круто погружаясь – в западном. Породы экзоконтакта подверглись ороговикованию, скарнированию, грейзенизации, альбитизации и биотитизации. В эндоконтакте штока проявлена интенсивная альбитизация и фельдшпатизация. Позднее сформировались пропиллиты.

Гранит-порфиры ранней фазы обнажены только в северной части штока в виде небольшого тела в приконтактовой части штока размерами 50×200 м. Это светло-серые породы с едва заметным розоватым оттенком, массивные с редкими шлировыми скоплениями эгирина и рибекита размерами до 3 см в поперечнике. В их составе преобладает призматический полевой шпат (50–50 %), в значительном количестве (до 30–35 %) отмечается кварц. Хаpaктерным темноцветным минералом является амфибол, равномерно распределённый в породе с редкими гломеропорфировыми скоплениями. Его содержания варьируют от 3 до 5 %. Амфибол представлен средними (до 0,5 см) удлинённо-призматическими кристаллами почти чёрного цвета с буровато-синим оттенком. По оптическим показателям относится к рибекиту с отчётливым плеохроизмом от жёлтого до тёмно-синего и фиолетового. Эгирин встречается почти с такой же частотой, как и рибекит. Он образует зёрна неправильной формы чаще всего приуроченные к интерстициям кристаллов щелочного полевого шпата и кварца. Плеохроизм в оттенках зелёного и жёлто-зелёного оттенков. Спорадически отмечается астрофиллит. Хаpaктерна гипидиоморфнозернистая структура, местами переходящая в аллотриоморфнозернистую. Акцессорные минералы представлены магнетитом, апатитом, редко – пиритом. В целом гранит-порфиры следует отнести к анорогенному А-типу гранитоидов, содержащим щелочные амфиболы.

На TAS диаграмме cоставы гранит-порфиров Кумирского штока попадают в поле трахириодацитов (рис. 1). По химизму гранит-порфиры относятся к умеренно-щелочным породам с преобладанием калия над натрием. Для них хаpaктерны высокие концентрации бария (до 970 г/т), стронция (до 340 г/т), сравнительно невысокие нормированные отношения лантана к иттербию (табл. 1), что свидетельствует о слабой фpaкционированной модели редких земель. Отношения лёгких к средним РЗЭ и урана к торию также невысокие (табл. 1).

Таблица 1

Cодержания оксидов (в масс. %), и микроэлементов (в г/т) в субвулканических образованиях Кумирского штока и дайках

Породы

1

2

3

4

5

6

7

8

SiO2

72,89

73,05

74,11

74,6

75,01

75,26

47,1

46,8

TiO2

0,07

0,06

0,03

0,03

0,02

0,02

1,44

1,45

Al2O3

12,48

12,57

14,46

14,5

14,41

14,37

15,8

15,7

Fe2O3

0,53

0,32

0,48

0,52

0,49

0,46

2,82

2,85

FeO

0,46

0,28

0,41

0,46

0,45

0,41

7,23

7,14

MnO

0,05

0,03

0,03

0,05

0,04

0,03

0,19

0,18

MgO

0,15

0,13

0,10

0,10

0,11

0,10

9,05

9,12

CaO

0,75

0,62

0,74

0,40

0,07

0,08

9,91

9,85

Na2O

3,05

2,99

4,23

4,4

4,47

4,51

2,2

2,1

K2O

5,94

5,9

4,37

4,07

4,10

4,15

0,73

0,77

P2O5

0,04

0,03

0,03

0,03

0,06

0,06

0,25

0,24

П.п.п.

2,1

2,08

1,04

0,84

0,61

0,48

2,96

2,94

Сумма

98,47

98,06

100,03

100,00

99,76

99,98

99,67

99,9

V

8,6

8,5

8,0

7,3

4,5

4,3

220

218

Cr

21,1

21,2

16,5

18

16

15

287

272

Ba

876

970

255

90

78

123

90,4

91,7

Ni

5,6

5,7

4,8

2,1

2,1

2,0

155

146

Co

6,0

5,8

2,8

1,1

1,0

0,9

60,1

58,8

Cu

4,5

4,2

4,0

3,5

2,5

2,3

60

53

Zn

6,4

5,0

8,0

60,0

63

50

110

105

Pb

12,3

12,0

11,9

11,3

10,2

9,8

4,1

3,11

Sn

9,4

9,5

10,3

9,6

11,5

12,1

< 2

< 2

Sc

3,1

3,0

7,7

7,2

7,13

7,5

44

38

Sr

351

340

50

11,0

11,1

45

235

238

Zr

37,8

35,1

31,3

31,1

30,4

30,1

104

109

Nb

33,1

32,4

30,7

31,2

30,9

29,8

3,93

4,09

Y

30,5

30,3

30,2

30,1

29,9

30,0

26,5

27

Yb

3,3

2,7

2,0

3,5

1,10

2,6

2,11

2,15

U

3,7

3,5

8,4

8,2

5,18

3,7

0,60

0,56

Th

14,9

14,6

10,5

10,4

9,96

13,8

1,02

0,96

Li

2,3

2,0

4,0

48

71,6

72,3

43,3

42,4

W

2,2

2,1

1,8

2,02

1,98

2,0

0,5

< 0,5

Mo

0,66

0,62

0,55

0,6

0,51

0,65

0,6

< 0,6

Rb

184

179

211

378

398

401

55,1

54,7

Cs

33,5

33,0

28,6

32,6

21,3

34

2,8

2,76

La

11,6

11,5

12,8

12,3

12,0

11,6

11,9

9,76

Ce

27,7

28,7

30,7

21,1

20,9

28,8

23,1

22,7

Pr

6,9

6,8

6,3

6,2

5,5

6,7

3,47

3,44

Nd

13,7

13,8

14,7

14,8

14,1

13,9

15,4

15,3

Sm

6,2

6,3

6,9

6,8

6,7

6,2

4,1

4,2

Eu

0,2

0,03

0,4

0,3

0,27

0,02

1,25

1,26

Gd

5,3

5,5

8,2

8,3

8,1

5,6

5,85

4,86

Tb

2,3

2,2

1,8

1,9

2,0

2,3

0,77

0,78

Dy

2,6

2,7

5,2

5,3

5,1

2,8

4,55

4,58

Ho

0,5

0,7

1,8

1,9

2,0

0,5

0,94

0,95

Er

1,9

1,8

3,0

3,3

3,2

1,7

2,85

2,87

Tm

0,6

0,5

0,6

0,7

0,8

0,4

0,37

0,38

Lu

0,09

0,10

0,11

0,11

0,13

0,09

0,37

0,36

Hf

2,9

2,8

3,1

3,2

3,3

2,7

2,59

2,57

Ta

1,6

1,4

3,0

4,8

4,5

1,3

0,28

0,27

La/YbN

2,32

2,82

4,22

2,32

7,48

2,94

3,74

2,99

La/SmN

1,15

1,12

1,13

1,1

1,09

1,14

1,78

1,42

Eu/Eu*

0,076

0,0012

0,0119

0,009

0,0082

0,0008

0,057

0,062

U/Th

0,25

0,24

0,80

0,79

0,52

0,27

0,57

0,58

Примечание. Силикатные анализы для главных компонентов, а также микроэлементов методами ICP-MS и ICP-AES выполнены в Лабораториях Института геологии и минералогии СОРАН (г. Новосибирск) и ВСГЕИ (г. Санкт-Петербург); N – элементы нормированы по [3]. Eu* = (SmN + GdN)/2. Породы Кумирского штока: 1 и 2 – гранит-порфиры, 3 – аляскит- порфиры; дайки: 7 и 8 – долериты.

Рис. 1. Положение фигуративных точек химического состава пород Кумирского штока на TAS (Na2O+K2O – SiO2) – диаграмме эффузивных аналогов горных пород:1 – гранит-порфиры; 2 – аляскит-порфиры; 3 – дайки долеритов

Щелочной аляскит-порфир второй фазы имеет светлую окраску с розоватым оттенком, хаpaктеризуется массивной текстурой и сложной структурой: порфировой, а в цементирующей массе породы – аплитовой. Аляскит-порфиры занимают основную часть штока. Лейкократовые минералы, составляющие 97 % ее объема, представлены кали-натровыми полевыми шпатами (альбит, ортоклаз-микропертит, анортоклаз) – 65 %, кварцем – 32 %, образующими редкие идиоморфные порфировые вкрапленники, но преимущественно выполняющими цементирующую аплитовидную массу породы. Хаpaктерной особенностью аляскит-порфиров является частая встречаемость нодулей турмалина размерами от 0,5 до 1,5 см в поперечнике, а также гломеровидных скоплений фтор-биотита размерами до 0,5 см. Анализы эгирина и рибекита показали высокие концентрации фтора в указанных минералах – от 0,1 до 1,5 %), что не хаpaктерно для пироксенов и амфиболов.

Дифpaктометрия полевых шпатов аляскит-порфиров позволяет относить их к варьирующему ряду от Ab45Or55 до Ab61Or39. При этом в микропертитовых кристаллах отмечается несколько более высокая доля альбитовой фазы. Меланократовые минералы, составляющие порядка 1–3 % ее объема, представлены идиоморфными зернами эгирина, рибекита и редко биотита, размеры которых почти на порядок превышают размеры зерен цементирующей массы породы. Вторичные минералы представлены серицитом (2 %), развитым за счет фенокристаллов щелочных полевых шпатов и образующим неравномерно рассеянные скопления в кварц-полевошпатовой массе породы. Рудные минералы представлены лейкоксенизированным магнетитом; акцессорные – апатитом, лейкоксеном.

Дайки долеритов обнаружены нами впервые в пределах Восточной зоны по ручью Осиновому. Они субсогласны с простиранием зоны. Мощность даек от 0,5 до 1,5 м. Дайки локализуются внутри рудной зоны и они пересекаются кварцевыми прожилками с тортвейтитом. Дайки секут ранние фельдшпатитовые метасоматиты, но на них накладываются более поздние метасоматиты пропилитового типа. Это массивные горные породы с долеритовой и долерит-офитовой структурами. Минеральный состав ( %): плагиоклаз – 55, пироксен – 35, роговая обманка – 8, биотит – единичные чешуйки, акцессории включают пирит, пирротин, титаномагнетит. В случае долерит-офитовой структуры каркас породы образуют крупные идиоморфные призматические кристаллы размерами 3–4 мм (лабрадор № 51–52) и основная ткань, сложенная пироксеном и плагиоклазом второй генерации размерами 0,5–1 мм (андезин № 35–37). Обе генерации плагиоклаза хаpaктеризуются хорошо проявленной полисинтетической микроструктурой двойникования.

Пироксен образует неправильные зёрна, близкие к таблитчатой форме размерами 1,5–2 мм. Диагностируется высококальциевым салитом и салит-авгитом (Wo36-45, En36-48, Fs1,4-1,9). Местами замещается зеленоватой роговой обманкой уралитового типа в виде неправильных каёмок по периферии и пятен по площади пироксена. Биотит образует редкие чешуйки и листочки размерами 0,5–1 мм, отчётливо плеохроирующие от светло-жёлтого по Ng1 до коричневого по Np1. В породе обильны акцессорные минералы, по объёму варьирующие от 1 до 2 %. Преобладают среди них правильные кристаллы пирита. В пробах-протолочках пирит наблюдается в виде правильных октаэдрических, пентагон-додекаэдрических кристаллов и комбинированных форм (пентагон-додекаэдра и октаэдра). Последовательность кристаллизации главных минералов: пироксен – плагиоклаз I – биотит-плагиоклаз II генерации.

Следует отметить, что фрагменты аналогичных даек обнаружены нами и в отвале штольни, пройденной по Западной зоне. Здесь обнаружена дайка пироксен-порфирового габбро-делерита мощностью от 20 до 50 см. Структура габбро-долерита четко долеритовая, местами габбро-долеритовая. Плагиоклаз Pl 50-55– (60 %) представлен двумя типами – сильно соссюритизированными крупными изометричными таблитчатыми выделениями ранней генерации и относительно свежими удлинёнными второй генерации – призматическими зернами (по ним номер плагиоклаза 50–55). Пироксен в первичной породе составлял 30 %. Сейчас это крупные бесформенные или изометричные выделения слегка буроватые в проходящем свете (авгит: 2V = 50° r > v, Ng–Np = 0,028–0,030). Иногда полностью замещен бледно сине-зеленой роговой обманкой переходной к актинолиту; её сейчас 20–25 %. Первичная порода была пироксен-порфировый габбро-долерит, возможно габбро-долерит. Рудный в изометричных зернах – магнетит (2–3 %). Порода пропилитизирована, вторичные минералы: эпидот (5–10 %), хлорит (5–6 %), мусковитоподобный серицит (3–5 %), пумпеллиит (1–2 %).

На TAS (Na2O + K2O – SiO2) – диаграмме эффузивных аналогов фигуративные точки химических составов пород расположены в области фигуративного поля горных пород семейства трахириолитов. По совокупности петрологических параметров порода лейкократовая, крайне высокоглиноземистая (Al′ = 13,71), принадлежит к кислым плутоническим породам щелочного ряда кали-натровой серии, относится к семейству щелочных лейкогранитов, соответствует виду щелочной аляскит, разновидности – щелочной аляскит-порфир эгирин-рибекитовый. В отличие от гранит-порфиров аляскит-порфиры хаpaктеризуются значительно меньшими концентрациями бария (от 78 до 255 г/т), стронция (от 11 до 50 г/т), ванадия, никеля, кобальта, хрома и более высокими – скандия, цинка, лития, рубидия, тантала (табл. 1). Степень фpaкционирования РЗЭ в них значительно выше (нормированные отношения лантана к иттербию варьируют от 2,32 до 7,48), чем в гранит-порфирах. Дайки долеритов на диаграмме локализуются в поле базальта известково-щелочной серии (см. рис. 1).

На диаграмме распределения РЗЭ, нормированных относительно хондрита, наблюдается отчётливая негативная аномалия по европию и в гранит-порфирах, и в аляскит-порфирах (рис. 2). В последних отмечается несколько повышенные концентрации и лёгких и тяжёлых РЗЭ. В отличие от гранитоидов, в дайках долеритов не проявлена аномалия по европию (рис. 2).

Рис. 2. Диаграмма содержаний РЗЭ в породах Кумирского штока:1 – гранит-порфиры; 2 – аляскит-порфиры; 3 – дайки долеритов

Гранит-порфиры и аляскит-порфиры хаpaктеризуются крайне неравномерным распределением многих элементов и в особенности редкоземельных. Об этом свидетельствуют варьирующие показатели тетрадного эффекта фpaкционирования РЗЭ, рассчитанные по В. Ирберу [5] (табл. 2). Оценка величины тетрадного эффекта свидетельствует о варьировании его от незначимых значений (менее 1,1) до заметных величин (от 1,16 до 1,6).

Таблица 2

Отношения элементов и значения тетрадного эффекта в субвулканических породах Кумирского штока

Отношения элементов и значения тетрадного эффекта

Гранит-порфир

(458-10)

Гранит-порфир

(458-13)

Аляскит-порфир

(458-15)

Аляскит-порфир

(2486)

Аляскит-порфир

(3456)

Аляскит-порфир

(3457)

Дайка долерита (211)

Отношения элементов в хондрите

YHo

61,0

43,3

16,8

15,8

14,9

60,0

28,42

29,0

EuEu*

0,076

0,0012

0,0119

0,009

0,0082

0,0008

0,062

0,27

LaLu

128,8

115,0

116,4

111,8

92,3

128,8

27,1

9,55

ZrHf

13,03

12,5

10,1

9,7

9,2

11,1

42,4

36,0

SrEu

1755

11333

125

36,7

41,1

2250

188,9

83,4

TE1,3

1,59

1,46

1,16

1,03

1,01

1,60

0,99

-

Примечание. ТЕ1.3 – тетрадный эффект по В. Ирбер [5]. Eu* = (SmN + GdN)/2.

На диаграмме La/Nb – Ce/Y более ранние гранитоиды штока тяготеют к тренду плавления мантийного субстрата, а более поздние дайки долеритов – к тренду смешения с корой (рис. 3). На диаграмме (La/YbN) – YbN породные типы тяготеют к мантийному источнику плавления кварцевого эклогита (рис. 4).

При этом значения тетрадного эффекта фpaкционирования РЗЭ коррелируруются с величинами отношений Y|Ho, La|Lu, Zr|Hf, Sr|Eu. Указанные отношения резко отличаются по своим значениям от таковых в хондритах (табл. 2).

Рис. 3. Диграмма La/Nb – Ce/Y по [4] для субвулканических пород Кумирского месторождения. Породы Кумирского месторождения: 1 – гранит-порфиры; 2 – аляскит-порфиры; 3 – дайки долеритов

Рис. 4. Диаграмма (La/YbN) – YbN по [4] для cубвулканических пород Кумирского месторождения. Тренды плавления различных источников по [5]:I – кварцевые эклогиты; II – гранатовые амфиболиты; III – амфиболиты; IV – гранат-содержащая мантия, с содержанием граната 10 %; V – гранат-содержащая мантия, с содержанием граната 5 %; VI – гранат-содержащая мантия, с содержанием граната 3 %; ВМ – верхняя мантия; ВК – верхняя кора. Остальные условные обозначения см. на рис. 3

Обсуждение полученных результатов и выводы

Приведенные новые данные по субвулканическому магматизму Кумирского месторождения позволяют сделать вывод о становлении магматизма в антидромной последовательности (от кислых пород к основным). При этом ранние гранитоиды Кумирского штока отнесены к А-типу анорогенных гранитодов, которые генерировались при частичном плавлении мантийного субстрата, а становление поздних даек долеритов происходило в процессе смешения базальтоидной магмы с коровым материалом. Основным мантийным источником плавления для родоначального базальтового глубинного резервуара были мантийные кварцевые эклогиты.



АВТОМАТИЧЕСКОЕ ЗАПОЛНЕНИЕ БАЗ ДАННЫХ

АВТОМАТИЧЕСКОЕ ЗАПОЛНЕНИЕ БАЗ ДАННЫХ Статья в формате PDF 270 KB...

25 05 2024 20:25:59

ПРОРАЩЕННЫЕ БОБЫ ЧЕЧЕВИЦЫ В ТЕХНОЛОГИИ ХЛЕБА

ПРОРАЩЕННЫЕ БОБЫ ЧЕЧЕВИЦЫ В ТЕХНОЛОГИИ ХЛЕБА Статья в формате PDF 123 KB...

22 05 2024 5:48:23

МОРФОЛОГИЧЕСКИЕ ОСНОВЫ ФОРМИРОВАНИЯ ИММУНИТЕТА

МОРФОЛОГИЧЕСКИЕ ОСНОВЫ ФОРМИРОВАНИЯ ИММУНИТЕТА Статья в формате PDF 152 KB...

20 05 2024 15:45:30

РАЗВИВАЮЩЕЕ ПРОФИЛАКТИЧЕСКОЕ ПРОСТРАНСТВО

РАЗВИВАЮЩЕЕ ПРОФИЛАКТИЧЕСКОЕ ПРОСТРАНСТВО Статья в формате PDF 101 KB...

17 05 2024 6:47:14

О ФИЗИКЕ СЕЙСМИЧЕСКОГО ИЗЛУЧЕНИЯ

О ФИЗИКЕ СЕЙСМИЧЕСКОГО ИЗЛУЧЕНИЯ Рассматриваются процессы формирования и распространения сейсмического излучения на основе ньютоновской механики. В источниках излучения среда приобретает механический импульс, который распространяется в виде пакета, действующего на элементы среды с силой, равной производной импульса по времени передачи. ...

16 05 2024 6:50:38

ОПТИМИЗАЦИЯ ТЕХНОЛОГИИ ПО ИЗГОТОВЛЕНИЮ ДЕТАЛИ ВАЛ

ОПТИМИЗАЦИЯ ТЕХНОЛОГИИ ПО ИЗГОТОВЛЕНИЮ ДЕТАЛИ ВАЛ Статья в формате PDF 253 KB...

15 05 2024 9:20:14

ЧАЙКОВСКИЙ ВИТОЛЬД КАЗИМИРОВИЧ

ЧАЙКОВСКИЙ ВИТОЛЬД КАЗИМИРОВИЧ Статья в формате PDF 327 KB...

13 05 2024 7:55:27

ОТЕЧЕСТВЕННЫЕ И ЗАРУБЕЖНЫЕ CAD/САМ СИСТЕМЫ

ОТЕЧЕСТВЕННЫЕ И ЗАРУБЕЖНЫЕ CAD/САМ СИСТЕМЫ Статья в формате PDF 378 KB...

05 05 2024 1:57:44

К вопросу о малигнизации папиллом гортани

К вопросу о малигнизации папиллом гортани Статья в формате PDF 122 KB...

28 04 2024 20:23:20

СОСТОЯНИЕ ВОДЫ ПЕРЕД ОЛИМПИАДОЙ

СОСТОЯНИЕ ВОДЫ ПЕРЕД ОЛИМПИАДОЙ Статья в формате PDF 131 KB...

24 04 2024 23:37:31

ЭКОЛОГО-БИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ БИОРАЗНОБРАЗИЯ В УСЛОВИЯХ ВЫСОТНО-ПОЯСНОЙ СТРУКТУРЫ ГОРНЫХ ЭКОСИСТЕМ АДЫГЕИ

ЭКОЛОГО-БИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ БИОРАЗНОБРАЗИЯ В УСЛОВИЯХ ВЫСОТНО-ПОЯСНОЙ СТРУКТУРЫ ГОРНЫХ ЭКОСИСТЕМ  АДЫГЕИ Проведен анализ результатов многолетних исследований по выявлению состава и объема видового разнообразия,расположенных в наземных экосистемах региона. Наибольшая видовая насыщенность отмечена в среднегорной части района – темнохвойных лесах, где господствует пихта кавказская (запас на исследуемых территориях – 3950 тыс.м3, сомкнутость от 0,5 до 0,9). Нижний подъярус составляют бук восточный, эндемики – дуб скальный, липа кавказская, третичные реликты: граб кавказский, тис ягодный.Геоботанические описания экосистем субальпийских лугов Лагонакского нагорья(1500 м н.у.м.) показал всего 39 видов растений, что говорит о низком видовом богатстве этого сообщества. Число видов на площади 16 м2 изменялось от 7 до 26, в среднем 14,3 вида. Проективное покрытие почвы цветковыми растениями в среднем составляет 19 %. Экосистемы субальпийских лугов хаpaктеризуются высокой относительной численностью животного населения при сравнительно небольшом количестве видов. Здесь доминирует полевка кустариниковая – 51,3 %, обычны – крот кавказский– 2,0 %, другие виды редки, но хаpaктерны – бурозубка кавказская– 6,4 %, мышовка кавказская, а вдоль ручьев – полевка Роберта – 8,2 %. Регулярное сенокошение лугов приводит к обеднению флористического состава, снижению общей высоты травостоя и как следствие, к деградации, выпадению бурозубки кавказской, крота кавказского и полевки прометеевой, численность которых падает до 1,0 %. В результате антропогенного пресса в экосистемах горных поясов, первоначальная структура растительного и животного состава изменена почти на 70 % исследуемой территории. Экосистемы, сформированные в каменных осыпях, криволесьях, парковых лесах региона хаpaктеризуются богатым видовым составом и эндемичностью (от 30 до 70 %). Наиболее эффективным способом сохранения редких видов является охрана их в местах естественного обитания на особо охраняемых территориях. Необходимо выделить эталонные участки с редкими и уязвимыми видами и контролировать с учетом их экологических особенностей (например, горные склоны Пшеха-Су и Фишт с видами – лисохвост пушистоцветковый, лютик Елены, лапчатка чудесная, овсяница кавказская, овсяница джимильская; серна,тур западнокавказский,улар кавказский). ...

18 04 2024 17:32:23

УЧЕБНЫЕ ИССЛЕДОВАНИЯ ГРАВИТАЦИИ (Ч. II)

УЧЕБНЫЕ ИССЛЕДОВАНИЯ ГРАВИТАЦИИ (Ч. II) В отличие от традиционного, показан иной путь интегрирования для получения уравнения напряженности гравитационного поля в точке на удалении от модельного однородного шарообразного тела. Доказано его соответствие закону всемирного тяготения при проведении компьютерного суммирования. Обнаружено наличие максимального вклада элементов шарообразного тела в величину напряженности гравитационного поля в исследуемой точке вне этого тела. Получена аналитическая зависимость глубины положения этих элементов внутри шарообразного тела от высоты исследуемой точки над поверхностью тела и его радиуса. ...

17 04 2024 20:24:58

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::