КЛАСТЕРНЫЙ АНАЛИЗ В СТРУКТУРЕ ИНФОРМАТИЗАЦИИ ДИДАКТИЧЕСКОГО ПРОЦЕССА
Введение
Интеграция педагогических и информационных технологий - одна из тенденций развития педагогической науки и пpaктики. Известно, что технология хаpaктеризуется тремя аспектами - информационным, инструментальным и социальным. Анализ научно-методической литературы и педагогической пpaктики показал, что в настоящее время недостаточно разработан информационный аспект педагогических информационных технологий, т.е. методы обработки информации в педагогическом управлении. По-прежнему в большинстве случаев и прогнозирование учебных достижений обучающихся, и принятие педагогических решений для коррекции дидактического процесса происходит умозрительно. Проблема исследования заключается в вопросе: какие математические методы обработки информации позволят автоматизировать прогнозирование учебных достижений обучающихся и принятие педагогических решений? Цель исследования - изучить роль кластерного анализа данных в процессе интеграции педагогических и информационных технологий.
Методы исследования
Под кластерным анализом понимают разбиение совокупности объектов на непересекающиеся подмножества (кластеры) с целью выделения групп схожих объектов. Кластеризация возможна как по количественным параметрам, так и качественным.
Результаты исследования
С точки зрения авторов, научно обоснованное прогнозирование учебных достижений обучающихся и принятие точных педагогических решений возможно только на основе кластеризации обучающихся. Ее следует производить на основе количественных показателей, отражающих как результаты учебной деятельности обучающихся, так и ее факторы (их можно получить в результате пропедевтического контроля и т.д.).
Ранее авторами статьи была разработана методика матричного моделирования сложных педагогических систем, основанная на получении матрицы вероятностей взаимосвязи между переменной-фактором и переменной-откликом. Обобщим данную методику.
Пусть S - набор прогнозируемых параметров (т.е. результатов учебной деятельности обучающихся), К - множество обучающихся. Тогда (при этом ), где N - число кластеров (групп обучающихся, схожих по выбранным параметрам). Необходимо помнить, что педагог может проводить дидактический процесс в нескольких учебных или академических группах. В этом случае , где L - количество учебных (академических) групп, Gi - множество обучающихся в I-й группе. Очевидно, что следует различать академические и кластерные группы. Например, обучающиеся одной кластерной группы могут принадлежать различным академическим группам (и наоборот).
По своей сути, S - многомерный вектор прогнозируемых параметров (D - их число, или размерность вектора). Для каждого параметра Si ( ) производят разбиение диапазона его возможных значений на непересекающиеся поддиапазоны. Множество числовых значений каждого поддиапазона принимают за квантованное значение переменной Si. Тогда конкретное значение многомерного вектора S составит комбинация квантованных значений составляющих его переменных.
Формируют матрицу вероятности, строками которой являются кластеры обучающихся, столбцами - комбинация прогнозируемых параметров для кластера. Пересечение строки и столбца отражает вероятность того, что для I-й кластерной группы набор прогнозируемых параметров примет j-е значение (обозначим ). Очевидно, что . Информационная энтропия (неопределенность) прогноза для I-го кластера .
Основные факторы уменьшения энтропии прогноза - сужение кластеров (это означает увеличение их количества) и сбор как можно большего объема информации о поведении объектах, относящихся к данному кластеру (информацию об обучающихся, факторах и результатах их учебной деятельности следует хранить в базе данных).
Возникает первый вопрос: каким образом формировать кластерные группы, т.е. выделять схожие объекты? Предложенный алгоритм состоит в следующем. Выделяют набор переменных W (пусть их число равно Q), по которым будут производить кластеризацию обучающихся (может не совпадать с S). Значения всех переменных путем расчетов преобразуют в условные баллы по R-балльной шкале (методы такого преобразования ранее были описаны авторами). Пусть εi - значимость (вес) I-го показателя ( ), при этом . Тогда расстояние в фазовом прострaнcтве (прострaнcтве признаков) между обучающимся (1) и обучающимся (2) составит , где и - соответственно значение (в баллах) I-го параметра для обучающегося (1) и обучающегося (2). Данных обучающихся относят к одному кластеру, если , где Δ - наперед заданное число, зависящее от рода задачи и необходимой точности ее решения.
Возникает второй вопрос: какие переменные следует отбирать во множество W - латентные (т.е. интегральные показатели) или индикаторные (т.е. дифференциальные показатели)? Ответ на данный вопрос во многом зависит от рода задачи, но в большинстве случаев, безусловно, более целесообразно применение интегральных параметров. В теории и пpaктике физического воспитания это могут быть физические качества (сила, быстрота, гибкость, выносливость и ловкость), здоровье, мотивация к занятиям физической культурой и т.д. В профессиональном образовании это может быть обученность, компоненты профессиональной компетентности будущего специалиста и т.д.
Аналогичным образом применяют кластерный анализ при принятии педагогических решений. Для каждого кластера обучающихся педагог в процессе своей деятельности (зачастую многолетней) отбирает наиболее рациональные варианты принятых решений, накапливая их в базе знаний (разновидность базы данных). Это позволяет сократить время на принятие верных педагогических решений и сделать данный процесс оперативным.
Кластерный анализ позволит существенно улучшить проведение педагогического эксперимента (включая обработку его результатов). При этом контрольную и экспериментальную группы можно разбить на кластеры, для каждого из которых следует вычислять эффективность апробируемой педагогической технологии в соответствии с общеизвестной схемой ROXO. Это позволит выявить условия эффективности апробируемой технологии (для одних кластеров она может оказаться эффективной, для других - нет).
Следует отметить, что применение кластерного анализа в обучении (управлении процессом усвоения знаний) и физическом воспитании (управлении процессом физического развития) во многом сходны между собой. Наиболее существенное отличие состоит в том, что в теории, методике и пpaктике физического воспитания приходится учитывать, помимо количественных параметров, качественные показатели (например, пoлoвые особенности, наличие или отсутствие заболеваний и т.д.). В этом случае производят предварительное разбиение множества обучающихся на подмножества по качественным показателям, а образовавшиеся подмножества подвергают кластерному анализу по количественным параметрам.
Заключение
Применение математических методов обработки информации - необходимое условие выведения научно-методической и педагогической деятельности на новый уровень. Кластерный анализ должен стать неотъемлемым компонентом методической системы математизации и информатизации педагогической науки и пpaктики. Пpaктическое значение кластерного анализа состоит в том, что его применение позволит оптимально совместить фронтальный и индивидуальный подходы к обучающимся.
В статье представлен фрагмент авторской концепции теории патологического процесса. На примере становления хронического инфекционного процесса проведен анализ взаимоотношения основных причинных факторов, составляющих сложную структуру этиологии болезни.
...
18 05 2025 14:48:45
Статья в формате PDF
116 KB...
17 05 2025 17:27:46
Статья в формате PDF
119 KB...
15 05 2025 10:26:44
Статья в формате PDF
143 KB...
14 05 2025 5:58:52
Статья в формате PDF
145 KB...
13 05 2025 17:38:47
Статья в формате PDF
122 KB...
12 05 2025 2:59:20
Статья в формате PDF
124 KB...
11 05 2025 1:31:16
Статья в формате PDF
110 KB...
10 05 2025 15:23:46
Проведена инвентаризация лихенофлоры Республики Татарстан (РТ). Показана роль особо охраняемых природных территорий в сохранении флористического разнообразия. Дан спектр семейств редких видов во флоре обследованной территории и анализ состава географических элементов. Рассмотрено распределение редких видов по основным типам местообитаний. Даются некоторые сведения о редких и исчезающих лишайниках для включения в Красную книгу РТ.
...
09 05 2025 14:23:56
Статья в формате PDF
121 KB...
08 05 2025 21:31:44
Статья в формате PDF
112 KB...
06 05 2025 19:21:47
Статья в формате PDF
112 KB...
04 05 2025 15:25:51
Статья в формате PDF
143 KB...
03 05 2025 5:17:58
Статья в формате PDF
145 KB...
02 05 2025 20:14:44
Статья в формате PDF
306 KB...
01 05 2025 22:21:10
Впервые с использованием метода Гольджи выявлены пoлoвые различия в дендроархитектонике нейронов заднего кортикального ядра МТ мозга пoлoвoзрелых крыс. Показано, что длинноаксонные редковетвистые нейроны у самцов имеют большее число первичных дендритов, а длинноаксонные густоветвистые нейроны обладают большей общей длиной дендритов у самок.
...
30 04 2025 14:13:55
Статья в формате PDF
264 KB...
29 04 2025 13:30:49
Статья в формате PDF
128 KB...
28 04 2025 1:59:59
Статья в формате PDF
311 KB...
26 04 2025 0:35:59
Статья в формате PDF
1190 KB...
25 04 2025 2:58:35
Статья в формате PDF
122 KB...
24 04 2025 18:15:56
Статья в формате PDF
111 KB...
23 04 2025 12:59:10
22 04 2025 3:29:49
21 04 2025 10:53:22
В тесте «открытое поле» изучено поведение гомозиготных (A2/A2) по локусу TAG 1A DRD2 крыс линии WAG/Rij до и после шести сеансов аудиогенной стимуляции, сопровождавшихся большими судорожными припадками. Найдено, что после стимуляции резко снижается двигательная и исследовательская активность крыс.
...
20 04 2025 5:45:14
Статья в формате PDF
127 KB...
19 04 2025 14:48:44
Статья в формате PDF
130 KB...
18 04 2025 6:53:37
Приведены геологические, геохимические и петрологические данные по щелочным гранитоидам майорского комплекса среднего девона. В его составе описаны 4 фазы внедрения: 1) роговообманковые габбро, габбро-нориты и габбро-диориты; 2) кварцевые диориты, гранодиориты амфибол-биотитовые; 3) биотит-амфиболовые граниты, субщелочные и рибекитовые граниты; 4) субщелочные лейкограниты, лейкограниты. Петрогеохимическими особенностями гранитоидов майорского типа являются повышенная щёлочность и наличие щелочного амфибола – рибекита. Прострaнcтвенно и парагенетически с майорскими гранитами, относящимися к анорогенной геодинамической обстановке формирования, ассоциирует железорудное и редкоземельное оруденение и щелочные метасоматиты. В экзоконтакте с Майорским массивом сформировались везувиан-гранат-пироксеновые скарны.
...
16 04 2025 14:20:47
Статья в формате PDF
154 KB...
15 04 2025 12:59:16
Статья в формате PDF
577 KB...
14 04 2025 2:31:53
Статья в формате PDF
106 KB...
13 04 2025 23:23:38
Статья в формате PDF
269 KB...
12 04 2025 16:22:54
Статья в формате PDF
219 KB...
11 04 2025 8:31:35
Статья в формате PDF
140 KB...
10 04 2025 11:28:53
Статья в формате PDF
145 KB...
09 04 2025 15:28:17
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::