ВЛИЯНИЕ ХАРАКТЕРИСТИК СТРУКТУРНОЙ ГЕТЕРОГЕННОСТИ НА ПРОЦЕССЫ ИЗНАШИВАНИЯ ТЕРМОДИФФУЗИОННЫХ ПОКРЫТИЙ > Полезные советы
Тысяча полезных мелочей    

ВЛИЯНИЕ ХАРАКТЕРИСТИК СТРУКТУРНОЙ ГЕТЕРОГЕННОСТИ НА ПРОЦЕССЫ ИЗНАШИВАНИЯ ТЕРМОДИФФУЗИОННЫХ ПОКРЫТИЙ

ВЛИЯНИЕ ХАРАКТЕРИСТИК СТРУКТУРНОЙ ГЕТЕРОГЕННОСТИ НА ПРОЦЕССЫ ИЗНАШИВАНИЯ ТЕРМОДИФФУЗИОННЫХ ПОКРЫТИЙ

В.М.Власов Л.М.Нечаев Н.Б.Фомичева В.К. Зеленко В течение продолжительного времени проводились триботехнические испытания различных термодиффузионных покрытий на изнашивание при трении скольжения. Они позволили сделать ряд принципиальных обобщений по взаимообусловленности структурного состояния покрытий и кинетики процессов износа. В результате моделирования фрикционных процессов широкого класса материалов было получено эмпирическое уравнение для коэффициента трения, отражающее параметрическое влияние свойств материала покрытий, реологию поверхностного трения и свойство смaзoчного материала. Статья в формате PDF 136 KB

Кинетика процессов изнашивания, коэффициенты трения скольжения и коррозионная стойкость высокопрочных покрытий, полученных термодиффузионными технологиями, являются в значительной степени структурно чувствительными и зависят от особенностей строения активного слоя. Безусловно, что на триботехнические свойства покрытий в первую очередь оказывает влияние их микроструктура, определяемая хаpaктеристиками структурной гетерогенности: размером фрагментов поликристалла, типом, геометрией, топографией, размерами и плотностью макродефектов (пор и включений). Достоверным является то, что субструктура, вид и уровень напряженного состояния также влияют на повреждаемость, и особенно на начальной стадии повреждаемости - зарождении микротрещин.

В течение продолжительного времени проводились триботехнические испытания различных термодиффузионных покрытий на изнашивание при трении скольжения. Они позволили сделать ряд принципиальных обобщений по взаимообусловленности структурного состояния покрытий и кинетики процессов износа.

Испытания для условий нереверсивного трения проводили на модернизированной стандартной машине СМЦ-2 с доработкой, в том числе узла крепления образца под схемы «штифт - шайба» и «кольцо - башмак». Установка позволила непрерывно контролировать износ в процессе эксперимента. Для имитации условий работы многих высокоскоростных узлов трения, была разработана оригинальная установка для испытаний на изнашивание в условиях нестационарного по скорости и нагрузке реверсивного трения в агрессивных газовых средах в диапазонах нагрузок до ~ 90 МПа и скоростей скольжения ~ 30 м/с с использованием гидроимпульсного генератора ударных волн [1,2].

Кинетика изнашивания термодиффузионно упрочненных сталей в области преимущественно усталостных процессов повреждаемости пpaктически во всех случаях может быть отражена уравнением

      (1)

в котором параметр Кх весьма чувствителен к субструктурному состоянию поверхностного слоя. В подтверждение этого в табл. 1 приведены данные по изменению показателя износостойкости в зависимости от технологических режимов упрочнения сталей.

Таблица 1

Изменение параметра Кx • 10-2 в зависимости от режимов трения сталей после электрогидроимпульсного упрочнения

Контактные    давления, МПа

Мягкие режимы упрочнения

Жесткие режимы упрочнения

Скорость скольжения, м/с

1.0

2.0

3.0

1.0

2.0

3.0

0.8

З*

4*

5*

4*

4*

7*

1.0

5*

5*

7*

5*

7*

8*

2.0

8*

10*

10

10*

10*

10

5.0

1.5

20

35

10

20

25

8.0

20

30

35

30

30

30

*3она механизма усталости.

Примечание. Границы субструктурных хаpaктеристик для мягких и жестких режимов упрочнения следующие: р= (2...3) • 1012 см-2; D* = 40 нм; Δα/α= 2-10-3.

Примечательно, что при жестком режиме воздействия, формирующем высокие уровни субструктурной повреждаемости, а значит, и меньшую энергоемкость, происходит повышение скорости изнашивания.

Параметр Кх линейно зависит от скорости трения Vтр и описывается степенной аппроксимацией от контактных давлений с показателем функции, равным 0.20...0.40. Последнее подтверждается серией экспериментов по изнашиванию сталей после импульсных способов их упрочнения. Производный параметр Ux в уравнении (1) в достаточной степени корректно хаpaктеризует определенное структурное состояние упрочненных слоев только в условиях реализации усталостного механизма изнашивания, и по этой причине его можно тpaктовать как экспериментальную материальную триботехническую константу.

Создание высокопрочных покрытий на сталях путем формирования легированного слоя расширяет зону усталостных механизмов изнашивания, Адгезионные процессы регулируются только в области низких скоростей скольжения, причем адгезионная зона весьма стабильна по своей топографии и пpaктически не зависит от вида материала покрытия и типа слоя. В области диаграммы, где сочетаются высокие скорости и нагрузки, преобладают трибохимические процессы поверхностной повреждаемости.

Для высокопрочных покрытий, в отличие от упрочненных стальных структур, кинетика неустановившегося изнашивания описывается выражением (1) с некоторыми приближениями. Степенной показатель ατ может быть меньше 1 и принимать значения в широком диапазоне от 0.2 до 0.9 в зависимости от структуры покрытий. Для однородных по химическому составу слоев этот параметр составляет 0.7...0.9. Переход к режиму установившегося изнашивания хаpaктеризуется приближением значения параметра ατ к 1.

Для покрытий, полученных при импульсных вариантах легирования чистыми металлами (хромом, молибденом, вольфрамом), хаpaктерна некоторая стабильность степенного показателя as в кинетическом уравнении. В частности, для усталостной зоны диаграмм изнашивания значение составляет-(1.2...1.3) (табл.2)

Таблица 2

Значения параметра as уравнения (1) для сталей, легированных молибденом и хромом электрогидроимпульсным методом

Контактные давления, МПа

Покрытие из молибдена

Покрытие из хрома

 

Тип1

Тип 2

Тип1

Тип 2

0.5

1.0

1.0

1.0

1.0

1.0

1.2

1.2

1.2

1.2

2.0

1.2

1.2

1.2

1.3

4.0

1.3

1.3

1.3

1.3

6.0

1.3

1.3

1.3

1.3

8.0

1.3

1.3

1.3

1.4

10.0

1.3

1.3

1.3

1.4

12.0

1.4

1,4

1.4

1.5

14.0

1.4

1.5

1.4

1.5

16.0

1.4

1.6

1.4

1.6

При более высоких контактных нагрузках, когда возможно протекание триботехнических реакций и микросколов, параметр as возрастает до значения 1.7...1.9.

Изнашивание покрытий из различных керамических материалов, полученных высокоэнергетическими технологиями, показало, что реакции износа, так же как и в случае для покрытий из тугоплавких металлов, на стадии регулярного изнашивания имеют пpaктически линейный хаpaктер. Типы слоев по отношению объемов V расплавов: 1) VMO≥VFE. 2) VMO≈VFE при Vтр≈ 1 м/с указаны в табл.2. С увеличением давления скорость износа возрастает нелинейно (табл. 3) (ασ ≈1.3...1.4), в то время как фактор скорости, и особенно при малых нагрузках, пpaктически не влияет на износостойкость.

Таблица 3

Влияние контактных давлений σ к на скорость изнашивания керамических покрытий, полученных лазерными технологиями (Х·107 мкм/мин*) 

Контактные   нагрузки, МПа

Тип керамического материала

Fе2В

FеN

W

TiN

W+Мо

10

0.9

1.0

1.2

0.7

0.7

80

7.6

8.4

10.1

6.0

5.6

120

11.3

12.5

13.2

9.0

8.6

Отмечено, что значения скоростей изнашивания коррелируют с прочностными упругими хаpaктеристиками материалов, а также со структурными макрогетерогенностями покрытий. Меньшей оксидации подвергаются нитридные и боридные покрытия (табл.4).

Таблица 4

Скорости изнашивания фрикционных пар с керамическими покрытиями (X 107 мкм/мин)

Контактные нагрузки, МПа

Тип фрикционной пары

Fе2В-Fе2В

Fе2В-Fе2Н

Fе2В-сталь

Fе2М-сталь

Fе2N-Fе2N

сталь-сталь

40

1.9

1.4

4.8

7.5

4.0

3.4

320

15.5

52

64

100

165

100

Механизмы изнашивания

У+Тх

Тх+У

А

А+Тх

У+Тх

А

Примечание. Обозначения механизмов: У - усталостный, Тх - триботехнический, А - адгезионный.

Мягкое контртело при сухом трении активизирует износ триботехнической пары вследствие развивающихся процессов адгезии, однако при наличии смазки оно формирует трибопленку и нивелирует износ.

При высоких контактных нагрузках, превышающих прочностные хаpaктеристики керамических материалов, микроконтактные объемы последних могут квазихрупко скалываться, что значительно активизирует процессы изнашивания. Кинетика триботехнической повреждаемости в этом случае может быть аппроксимирована уравнением (1) при больших значениях степенного показателя ασ≈1.8...1.9.

В результате моделирования фрикционных процессов широкого класса материалов было получено эмпирическое уравнение для коэффициента трения, отражающее параметрическое влияние свойств материала покрытий, реологию поверхностного трения и свойство смaзoчного материала:

где показатель Kβ можно определить как 0.25

Эмпирические параметры ωE , αR и βq, отражают определенные свойства элементов трибосистемы: wE - физико-механические свойства контактирующих высокопрочных материалов и изменяются от -12 до +12; αR - микрогеометрию трущейся поверхности и имеют определенный реологический смысл в интервале от 0.05 до 0.50; βq - адгезионные свойства смазки окружающей среды и изменяются от 0.1 до 0.9.

Зависимость (2) рекомендуется использовать при моделировании коэффициента трения с учетом начальных величин давления σk и скорости скольжения Vcк. Сочетание параметров (Vcк и ωE), (σk и αR) и (S и βq) отражает определенный физический смысл. Скорость трения может изменять физические хаpaктеристики в связи со значением фактора ωE а количество смaзoчного материала - пассивировать динамические хаpaктеристики контакта в связи с хаpaктеристикой βq. Наличие специальных таблиц, количественно связывающих параметры ωE ,αR и βq с хаpaктеристиками триботехнической системы, дает возможность с высокой точностью оценивать коэффициент трения в связи с реальной структурой гетерогенного.

СПИСОК ЛИТЕРАТУРЫ

  1. Власов В.М., Нечаев Л.М. //Работоспособность высокопрочных термодиффузионных покрытий в узлах трения машин. Тула: Приок.кн.изд-во, 1994, 237с.
  2. Фролов Н.Н., Власов В.М.//Газотермические износостойкие покрытия в машиностроении. М.:Машиностроение, 1992, 255с.


ТУЧНЫЕ КЛЕТКИ ЭНДОМЕТРИЯ МАТКИ КРЫС В СИСТЕМЕ ЕЕ БИОАМИНОВОГО ОБМЕНА

ТУЧНЫЕ КЛЕТКИ ЭНДОМЕТРИЯ МАТКИ КРЫС В СИСТЕМЕ ЕЕ БИОАМИНОВОГО ОБМЕНА С помощью микроспектральных флуоресцентно-гистохимических методов в тучных клетках эндометрия тела и шейки матки крыс дифференцированы гистамин, серотонин и катехоламины. Определено содержание указанных моноаминов в различные фазы пoлoвoго цикла. Тучные клетки шейки матки по сравнению с ее телом хаpaктеризуются более высоким уровнем моноаминов. Содержания катехоламинов и серотонина в точках зондирования хаpaктеризуются высокой степенью линейной корреляции во все стадии пoлoвoго цикла. Установлена высокая степень положительного хроносопряжения динамики изменений содержания гистамина в тучных клетках и эпителиоцитах эндометрия. Предполагается, что тучные клетки выступают в качестве регулятора биоаминового обмена в эндометрии в течение пoлoвoго цикла. ...

15 04 2024 22:56:15

СОВРЕМЕННЫЕ ТЕХНОЛОГИИ МОБИЛЬНОЙ СВЯЗИ

СОВРЕМЕННЫЕ ТЕХНОЛОГИИ МОБИЛЬНОЙ СВЯЗИ Статья в формате PDF 288 KB...

14 04 2024 7:27:31

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ФАКТОРА ПОЛА НА ПОВЕДЕНИЕ КРЫС С РАЗЛИЧИЯМИ АЛЛЕЛЬНОЙ СТРУКТУРЫ ГЕНА РЕЦЕПТОРА ДОФАМИНА ВТОРОГО ТИПА (DRD2) В ТЕСТЕ ПРИПОДНЯТЫЙ КРЕСТООБРАЗНЫЙ ЛАБИРИНТ И МОРФОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ МИНДАЛЕВИДНОГО КОМПЛЕКСА МОЗГА

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ФАКТОРА ПОЛА НА ПОВЕДЕНИЕ КРЫС С РАЗЛИЧИЯМИ АЛЛЕЛЬНОЙ СТРУКТУРЫ ГЕНА РЕЦЕПТОРА ДОФАМИНА ВТОРОГО ТИПА (DRD2) В ТЕСТЕ ПРИПОДНЯТЫЙ КРЕСТООБРАЗНЫЙ ЛАБИРИНТ И МОРФОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ МИНДАЛЕВИДНОГО КОМПЛЕКСА МОЗГА В работе впервые приведены сведения о пoлoвых особенностях поведения в «приподнятом крестообразном лабиринте» двух групп крыс, гомозиготных по двуаллельному локусу TAG 1A DRD2, а также сравнительный анализ морфометрических хаpaктеристик миндалевидного комплекса мозга ...

10 04 2024 20:25:44

АКТУАЛЬНОСТЬ ЭКОЛОГИЧЕСКОГО ОБРАЗОВАНИЯ

АКТУАЛЬНОСТЬ ЭКОЛОГИЧЕСКОГО ОБРАЗОВАНИЯ Статья в формате PDF 129 KB...

02 04 2024 19:21:51

ХОХЛОВ ЕВГЕНИЙ СЕРГЕЕВИЧ

ХОХЛОВ ЕВГЕНИЙ СЕРГЕЕВИЧ Статья в формате PDF 167 KB...

27 03 2024 11:32:23

ИММУНОЛОГИЧЕСКИЕ ПРОБЛЕМЫ СТАРЕНИЯ

ИММУНОЛОГИЧЕСКИЕ ПРОБЛЕМЫ СТАРЕНИЯ Статья в формате PDF 94 KB...

26 03 2024 14:40:44

Секреты успешного проведения собеседования

Секреты успешного проведения собеседования Статья в формате PDF 265 KB...

24 03 2024 0:50:31

ОСОБЕННОСТИ РЕАКЦИИ КОСТНОГО МОЗГА НА ОСТРУЮ И ХРОНИЧЕСКУЮ КРОВОПОТЕРИ

ОСОБЕННОСТИ РЕАКЦИИ КОСТНОГО МОЗГА НА ОСТРУЮ И ХРОНИЧЕСКУЮ КРОВОПОТЕРИ Сравнительным исследованием костного мозга больных, перенесших острую и хроническую кровопотери, установлено, что после острой кровопотери общее количество миелокариоцитов, количества эритрокариоцитов и гранулоцитов были существенно меньше аналогичных показателей морфологического состава костного мозга после хронической кровопотери. Уменьшение содержания гранулоцитарных миелокариоцитов после острой кровопотери было обусловлено резким снижением количества их созревающих форм, чего не наблюдалось после хронической кровопотери. При этом содержание в костном мозге зрелых форм гранулоцитов было одинаковым после обоих видов кровопотери. Уменьшение содержания в костном мозге после острой кровопотери созревающих форм гранулоцитов сопровождалось значительным уменьшением индекса созревания нейтрофилов, что свидетельствует об ускорении их созревания и выброса в кровеносное русло. Для хронической кровопотери была хаpaктерна эритроидная гиперплазия костного мозга. ...

20 03 2024 12:23:56

КЛИНИЧЕСКАЯ АНАТОМИЯ НЕРВНЫХ СПЛЕТЕНИЙ ЧЕЛОВЕКА

КЛИНИЧЕСКАЯ АНАТОМИЯ НЕРВНЫХ СПЛЕТЕНИЙ ЧЕЛОВЕКА Статья в формате PDF 230 KB...

19 03 2024 19:26:46

Статистические закономерности хронологии космонавтики

Статистические закономерности хронологии космонавтики В статье описана и исследована методами математической статистики хронологическая аномалия космонавтики. Обоснован биномиальный закон распределения числа хронологических совпадений. Показано, что вероятность случайного появления рассматриваемых совпадений весьма мала. Метод исследования, применяемый в работе, преимущественно основан на статистическом анализе хронологии при помощи параметризации дат событий и проверки соответствующего критериального свойства. Используются параметры: условные номера дней с начала летоисчисления N, с начала года n и год Г. Основными информативными параметрами являются интервалы времени между событиями.Обоснован биномиальный закон распределения числа хронологических совпадений. Показано, что вероятность случайного появления рассматриваемых совпадений весьма мала. ...

18 03 2024 11:44:52

УСЛОВИЯ ЭКСПЛУАТАЦИИ И ОХРАНЫ ДОРОГ ОТ ВРЕДНОГО ВЛИЯНИЯ ГОРНЫХ РАБОТ

УСЛОВИЯ ЭКСПЛУАТАЦИИ И ОХРАНЫ ДОРОГ ОТ ВРЕДНОГО ВЛИЯНИЯ ГОРНЫХ РАБОТ Определены условия охраны и поддержания дорог при их многократной подработке подземными горными выработками. ...

14 03 2024 0:52:57

Гиперболическая модель задачи о фазовом переходе

Гиперболическая модель задачи о фазовом переходе Статья в формате PDF 117 KB...

13 03 2024 1:12:18

ИНТЕГРАЦИЯ ФАРМАКОЛОГИЧЕСКИХ ЭФФЕКТОВ ИЗОНИАЗИДА В ХИМИОТЕРАПИИ ТУБЕРКУЛЕЗА ЛЕГКИХ

ИНТЕГРАЦИЯ ФАРМАКОЛОГИЧЕСКИХ ЭФФЕКТОВ ИЗОНИАЗИДА В ХИМИОТЕРАПИИ ТУБЕРКУЛЕЗА ЛЕГКИХ Предложен метод межреберного внутримышечного введения препаратов с непосредственным ультразвуковым «метод глубокого фонофореза», или лазерным воздействием «метод глубокого фотофореза» на место инъекции по рентгенологической проекции воспалительной зоны, и изучены механизмы их лечебного действия у больных деструктивным туберкулезом легких с выраженным пневмофиброзом и патологией органов пищеварения. Создание в очаге туберкулезного поражения повышенной концентрации изониазида повышает эффективность химиотерапии туберкулеза легких в условиях выраженного пневмофиброза изученными методами на 18%. ...

11 03 2024 10:49:44

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::