ЭКОЛОГИЧНАЯ ТЕХНОЛОГИЯ ОЧИСТКИ И УТИЛИЗАЦИИ ГАЗООБРАЗНЫХ ВЫБРОСОВ ТЕПЛОГЕНЕРИРУЮЩИХ УСТАНОВОК > Полезные советы
Тысяча полезных мелочей    

ЭКОЛОГИЧНАЯ ТЕХНОЛОГИЯ ОЧИСТКИ И УТИЛИЗАЦИИ ГАЗООБРАЗНЫХ ВЫБРОСОВ ТЕПЛОГЕНЕРИРУЮЩИХ УСТАНОВОК

ЭКОЛОГИЧНАЯ ТЕХНОЛОГИЯ ОЧИСТКИ И УТИЛИЗАЦИИ ГАЗООБРАЗНЫХ ВЫБРОСОВ ТЕПЛОГЕНЕРИРУЮЩИХ УСТАНОВОК

Ежов В.С. Статья в формате PDF 120 KB

В связи с переходом значительной части ТЭС и котельных на газообразное топливо особое значение приобретает очистка сбросных дымовых газов от окислов азота. Значение и масштабность этой проблемы определяет большое количество способов и подходов к ее решению. Первостепенными факторами, определяющими пригодность того или иного технического решения к масштабной реализации, являются его экологическая безопасность и экономическая эффективность

Первое предполагает использование таких способов очистки , которые исключают попадание в окружающую среду (атмосферу и водоемы) загрязнений, являющихся продуктами процесса очистки и регенерации ее технологических компонентов. Второе предполагает использование дешевых и доступных регентов, использования типовых процессов, и, соответственно, доступного и недорогого типового оборудования, надежного и простого в эксплуатации.

Известные вторичные методы снижения выбросов окислов азота, связанные с системами газооочистки, хотя и обеспечивают высокую степень очистки дымовых газов, но при этом основаны на использовании различных химических реагентов, что требует разработки иных, экономически и экологически эффективных методов

Хаpaктерной особенностью энергетических объектов, с точки зрения их взаимодействия с окружающей средой, в частности с атмосферой и гидросферой, является наличие тепловых выбросов. В свою очередь, потери теплоты, обусловленные процессом преобразования химической энергии топлива в тепловую энергию рабочего тела (вода, пар), главным образом, связаны с выбросами в атмосферу продуктов сгорания топлива, в связи с чем снижение тепловых выбросов следует рассматривать совместно со снижением вредных примесей в дымовых газах. При этом, известно, что снижение тепловых выбросов влечет за собой повышение коэффициента полезного действия энергетической установки (при снижении температуры дымовых газов на (12-14) 0С, КПД теплогенерирующей установки повышается на 1%).

Наряду с улучшением экологических хаpaктеристик атмосферы и повышением эффективности энергетических установок, снижение тепловых и вредных выбросов в дымовых газах влечет за собой принципиальную возможность создания на базе установок очистки устройств для утилизации основных вредных компонентов (окислы азота и серы, двуокись углерода, пары воды), входящих в состав дымовых газов с использованием достижений современной технической технологии.

Таким образом, комплексное сочетание очистки дымовых газов от вредных компонентов, снижение их тепловых выбросов и утилизация большей части тепла и улавливаемых компонентов, в конечном счете, приблизит показатели энергетического предприятия к безотходному экономически рентабельному производству.

Из технологических параметров работы теплогенерирующих установок известно, что температура дымовых газов на выходе из хвостовых поверхностей в зависимости от вида сжигаемого топлива поддерживается в пределах (120-160)0С и ее величина назначается из условий предотвращения конденсации водяных паров, образующихся при сжигании топлива. Для различных видов топлива также известно, что в составе их газообразных продуктов сгорания находится значительное количество водяных паров (0,4-1,0) м3/кг (сжигаемого топлива) для углей, 1,4 м3/кг для мазутов и (2-2,2) м3/ м3 для природного газа. Наличие водяных паров в дымовых газах обусловлено присутствием водорода в горючей части топлива и определяет разницу между высшей и низшей теплотой сгорания топлива (Qв и Qн), обусловленной теплотой их конденсации.

Анализ особенностей процессов очистки дымовых газов от окислов азота показывает, что комплексную очистку, совмещенную с утилизацией тепла и уловленных компонентов возможно осуществить только абсорбционным методом.

Общеизвестно, что из всех из химических реагентов наиболее доступным и безопасным с точки зрения эксплуатации и экологии является вода. Однако, ее использование для абсорбции окислов азота, содержащих до 95% NO из дымовых газов, нереально ввиду очень малой растворимости NO в воде. В тоже время высшие окислы азота быстро поглощаются водой с образованием азотной и азотистой кислот. Отсюда следует, что абсорбция окислов азота (NO) водой возможна только при их дальнейшем окисление до NO2 и N2O3. Из ряда работ известно, что быстрое окисление NO в NO2 происходит при использовании в качестве окислителя озона, который при попадании в атмосферу быстро трaнcформируется в молекулярный кислород. Требуемый озон можно получить непосредственно на месте его потрeбления путем озонирования кислорода воздуха. Температура, при которой равновесие реакции окисления окиси азота сдвинута полностью вправо должна быть ниже 1000С.

Основные стадии данного способа очистки следующие.

Образование озона в озонаторе

     (1)

Окисление окиси азота в газовой и жидкой фазах

       (2)

Так как при температуре ниже точки росы в дымовых газах присутствует конденсат водяных паров, то во влажном газе параллельно с процессами окисления озоном происходит образование азотной кислоты по реакциям

            (3)

         (4)

Термодинамический анализ реакций окисления окислов азота показывает, что при окислении озоном можно достичь высоких степеней очистки газовых выбросов от окислов азота при содержании их в смеси в малых концентрациях, что хаpaктерно для дымовых газов.

В общих чертах механизм процесса взаимодействия окислов азота с водой описывается следующими реакциями:

 кДж                           (5)

 кДж                      (6)

 кДж                          (7)

Процессом, в котором совмещаются основные составляющие данного способа очистки является абсорбция, что позволяет проводить окисление, охлаждение, абсорбцию и очистку дымовых газов в одной и той же аппаратуре.

Таким образом, при охлаждении дымовых газов ниже температуры точки росы, сочетании окисления окислов азота дымовых газов озоном и дальнейшем поглощении высших окислов водой можно добиться высокой экологичности процесса очистки дымовых газов. Кроме того, снижение температуры сбросных дымовых газов ниже точки росы увеличивает КПД котельного агрегата на несколько процентов (например, при снижении температуры от 1200С до 800С КПД повысится приблизительно на 3% ), что в принципе позволяет окупить затраты на реконструкцию.

На основании вышеизложенного в Курском государственном техническом университете разработаны технические решения по очистке дымовых газов от окислов азота совместно с утилизацией их тепла и улавливаемых компонентов, выделения двуокиси углерода, основанные на окислительном способе, при температуре значительно меньшей точки росы и предназначенные как для централизованного, так и для автономного теплоснабжения. В качестве абсорбента используется смесь подпиточной воды и конденсата водяных паров дымовых газов теплогенерирующих установок [1-10].

СПИСОК ЛИТЕРАТУРЫ:

  1. Пат. 2186612 Российская Федерация, МПК7 B 01 D 53/60. Способ и устройство для очистки дымовых газов, утилизации их тепла и улавливаемых компонентов [Текст] / Ежов В.С.; заявитель и патентообладатель Курск. гос. техн. ун-т. № 2000131003; заявл. 13.12.2000; опубл. 10.08.02, Бюл. № 22. 5 с.: ил.
  2. Ежов В.С. Снижение вредных газообразных выбросов источников центрального теплоснабжения. [Текст]- Промышленная энергетика, 2006, №12.
  3. Пат. 2254161 Российская Федерация, МПК7 B 01 D 53/60, 53/14. Комплексный способ и устройство для очистки и утилизации дымовых газов [Текст] / Ежов В.С., Семичева н.Е.; заявитель и патентообладатель Курск. гос. техн. ун-т. № 2003136493/15; заявл. 16.12.03; опубл. 20.06.05, Бюл. № 17. 7 с.: ил.
  4. Пат. 2271500 Российская Федерация, МПК7 F 24 D 3/00. Способ автономного теплоснабжения и мобильная мультикотельная для его осуществления [Текст] / Ежов В.С., Мамаева Д.В., Левит В.А.; заявитель и патентообладатель Курск. гос. техн. ун-т.; заявл. 24.05.04; опубл. 10.03.06, Бюл.№7, 9 с.: ил.
  5. Пат. 2280815 Российская Федерация, МПК7 F 24 D 3/00. Способ автономного теплоснабжения и миникотельная для его осуществления [Текст] / Ежов В.С., Семичева Н. Е., Мамонтов А. Ю.; заявитель и патентообладатель Курск. гос. техн. ун-т; заявл. 26.04.04; опубл. 27.07.06, Бюл.№21, 9 с.: ил.
  6. Ежов В. С.,Семичева Н. Е.Уменьшение вредных газообразных выбросов от источников теплоснабжения в жилых массивах. [Текст] / Безопасность жизнедеятельности, 2006, №12.
  7. Ежов В. С., Левит В. А., Мамаева Д. В. Повышение эффективности и экологической безопасности автономного теплоснабжения. [Текст] / Энергетик, 2006, №11.
  8. Пат. 2285866 Российская Федерация, МПК7 F 24 D 3/00. Автономная система квартирного теплоснабжения [Текст] / Ежов В.С.,Левит В. А., Мамаева Д. А.; заявитель и патентообладатель Курск. гос. техн. ун-т.; заявл. 11.01.05; опубл. 20.06.06, Бюл.№29, 5 с.: ил.
  9. Пат. 2217221 Российская Федерация, МПК7 B 01 D 53/14. Способ и устройство для выделения двуокиси углерода из дымовых газов [Текст] / Ежов В.С.; заявитель и патентообладатель Курск. гос. техн. ун-т. № 2001117978; заявл. 27.06.01; опубл. 27.11.03, Бюл. № 33. 7 с.: ил.
  10. Ежов В. С. Экологически эффективное получение двуокиси углерода. [Текст] / Экология и промышленность России, 2007, №4.


ЗЫБАЛОВ ВЛАДИМИР СТЕПАНОВИЧ

ЗЫБАЛОВ ВЛАДИМИР СТЕПАНОВИЧ Статья в формате PDF 230 KB...

04 12 2022 22:57:12

Иммунологические аспекты у детей с долихосигмой

Иммунологические аспекты у детей с долихосигмой Статья в формате PDF 103 KB...

27 11 2022 23:57:32

НОВАЯ ПАРАДИГМА ДЛЯ ПЕДАГОГИКИ

НОВАЯ ПАРАДИГМА ДЛЯ ПЕДАГОГИКИ Статья в формате PDF 154 KB...

20 11 2022 5:19:54

ПРИВЕТСТВИЯ В ПОВСЕДНЕВНОЙ РЕЧИ СТУДЕНТОВ

ПРИВЕТСТВИЯ В ПОВСЕДНЕВНОЙ РЕЧИ СТУДЕНТОВ Статья в формате PDF 245 KB...

14 11 2022 17:52:55

СИСТЕМНЫЕ МОДЕЛИ ВООРУЖЕННЫХ КОНФЛИКТОВ

СИСТЕМНЫЕ МОДЕЛИ ВООРУЖЕННЫХ КОНФЛИКТОВ Статья в формате PDF 108 KB...

01 11 2022 12:41:53

МОДЕЛИРОВАНИЕ РЫНОЧНОЙ СТРАТЕГИИ ПРЕДПРИЯТИЯ

МОДЕЛИРОВАНИЕ РЫНОЧНОЙ СТРАТЕГИИ ПРЕДПРИЯТИЯ Статья в формате PDF 70 KB...

30 10 2022 3:48:54

СТРАТЕГИЯ РАЗВИТИЯ НАУЧНОГО ЕСТЕСТВОЗНАНИЯ В ХХI ВЕКЕ

СТРАТЕГИЯ РАЗВИТИЯ НАУЧНОГО ЕСТЕСТВОЗНАНИЯ В ХХI ВЕКЕ К концу ХХ века накопилось огромное количество фактов и доказательств научной несостоятельности постулатов теории относительности (ТО), положенных в основу физических представлений о структуре микро- и макромира. ТО оторвала науку от изучения природных взаимосвязей, подменив их уравнениями с некими значками без чёткого понимания их сущности: масса, заряд, магнетизм и т.д. Игнорирование законов Природы привело человечество к цивилизационному кризису – нарушено равновесие биосферы. Причина глобальных изменений состоит в том, что антропогенное производство энергии в десятки раз превышает допустимый по законам межсистемного обмена порог. Продолжение технократического развития – тупик, катастрофа. Необходимо новое естествопонимание на основе аксиомы: «Мир построен системно». Структура материального мира определяется взаимодействием непрерывной не материальной вихреобразной среды и дискретных образований материи – элементарных частиц, из которых закономерно и системно построено всё от атомов до звёзд и галактик. ...

28 10 2022 6:55:24

НООСФЕРА ИЛИ СОФИОСФЕРА?

НООСФЕРА ИЛИ СОФИОСФЕРА? Статья в формате PDF 126 KB...

25 10 2022 20:19:12

ИССЛЕДОВАНИЕ И РАЗРАБОТКА СПЕЦИАЛЬНОЙ ОДЕЖДЫ ПРОТИВ SHISTOSOMIASIS ИНФЕКЦИИ

ИССЛЕДОВАНИЕ И РАЗРАБОТКА СПЕЦИАЛЬНОЙ ОДЕЖДЫ ПРОТИВ SHISTOSOMIASIS ИНФЕКЦИИ Статья рассматривает механизм возникновения и пути передачи Shistosomiasis инфекции. С использованием хлопчатобумажной ткани, прошедшей специальную медицинскую обработку, в качестве основного материала для одежды проведены лабораторные исследования, в том числе и с живыми существами. Показано, что использование 5 %-ных растворов химических медицинских препаратов при отделке ткани позволяет достигнуть 100 %ного уровня защиты. Промышленно произведенная ткань обладает лучшими свойствами, чем лабораторные образцы, на 43 % и обеспечивает превосходные результаты защиты. ...

20 10 2022 1:29:19

ИЗУЧЕНИЕ ХИМИЧЕСКОГО СОСТАВА И СПЕКТРОФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ АМИНОКИСЛОТ В ТРАВЕ ОВСА ПОСЕВНОГО

ИЗУЧЕНИЕ ХИМИЧЕСКОГО СОСТАВА И СПЕКТРОФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ АМИНОКИСЛОТ В ТРАВЕ ОВСА ПОСЕВНОГО Изучен химический состав травы овса посевного. Качественными реакциями обнаружены аминокислоты, крахмал и флавоноиды. Разработана методика спекторофотометрического определения суммы аминокислот по реакции с нингидрином. Установлено, что в траве овса содержится до 1% аминокислот в пересчете на кислоту глютаминовую. ...

19 10 2022 8:45:23

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::