ПРОБЛЕМЫ АВТОМАТИЗАЦИИ КОНТРОЛЯ МАГНИТНЫХ ПОЛЕЙ РАССЕЯНИЯ С ПОМОЩЬЮ МАГНИТНЫХ ЖИДКОСТЕЙ > Полезные советы
Тысяча полезных мелочей    

ПРОБЛЕМЫ АВТОМАТИЗАЦИИ КОНТРОЛЯ МАГНИТНЫХ ПОЛЕЙ РАССЕЯНИЯ С ПОМОЩЬЮ МАГНИТНЫХ ЖИДКОСТЕЙ

ПРОБЛЕМЫ АВТОМАТИЗАЦИИ КОНТРОЛЯ МАГНИТНЫХ ПОЛЕЙ РАССЕЯНИЯ С ПОМОЩЬЮ МАГНИТНЫХ ЖИДКОСТЕЙ

4273be2a
Дроздова В.И. Шагрова Г.В. Приходкин А.В. Статья в формате PDF 113 KB

Магнитные жидкости (МЖ) как новые ис­кусственные перспективные материалы для при­боростроения, медицины и сепарации полезных ископаемых появились раньше, чем термин «нанотехнологии». МЖ представляют собой стаби­лизированные коллоидные растворы ферро- или ферримагнитных частиц в немагнитных носите­лях. Размер магнитных частиц составляет поряд­ка 10 нм, поэтому МЖ иногда рассматривают как нанодисперсные материалы. За почти 50 лет ис­следования и применения МЖ были разработаны электромеханические преобразователи, гермети­заторы, датчики физических величин, сепараторы и рентген-контрастные вещества для медицин­ских исследований.

На основе магнитных жидкостей получены индикаторные среды, используемые для визуали­зации дефектов на поверхности изделий, способ­ных намагничиваться в слабых магнитных полях. Разработка таких индикаторных сред позволила предложить новые способы и устройства для контроля магнитных полей рассеяния магнитных головок (МГ) и сигналограмм [1,2,3,4], устройст­во для визуализации магнитного поля, способы определения полей рассеяния МГ и коэрцитивной силы магнитного носителя, метод моделирования критических зон записи. Индикаторными среда­ми, способными визуализировать поля рассеяния микроскопических намагниченных объектов или дефекты на поверхностях изделий, способных намагничиваться в слабых магнитных полях яв­ляются: магнитные жидкости, мелкодисперсные эмульсии магнитных жидкостей [5-8], магнитные жидкости с микрокапельными агрегатами [9].

В настоящее время развитие технологии производства и применение вычислительной тех­ники позволяет не только проводить многосто­ронние исследования хаpaктеристик разнообраз­ных технических устройств, но и ставит задачу по автоматизации процесса измерений, повышению точности получаемых результатов, что по­зволит значительно сократить время исследова­ния и число занятых в исследовательском про­цессе людей.

При использовании магниточувствительных жидкостей необходимо контролировать та­кие их параметры как количество и размеры дис­персной фазы, распределение по размерам, поли-или монодисперсность их состава. Использование в качестве датчиков магнитных полей рассеяния микрокапельных агрегатов размером порядка 1 мкм ставит задачу контроля их прострaнcтвенно­го расположения, размеров и формы. Для автома­тизации способов контроля магнитных полей рассеяния микроскопических объектов, описан­ных в работах [1-13], необходимо реализовать получение, оцифровку и распознавание изобра­жений, полученных с помощью магнитооптиче­ских датчиков.

Распознавание видеоизображений является отраслью, использующей возможности самых разных областей математики, средств вычисли­тельной техники и методов программирования. Наиболее распространенными методами распо­знавания изображений являются экстремально-корреляционные, статистические, структурно-лингвистические, геометрических инвариантов. Эти методы основаны на сравнении эталонного и анализируемого изображений непосредственно или через вторичные признаки. Вне зависимости от метода качество сравнения в сильной степени зависит от идентичности условий освещения и наблюдения анализируемого и эталонного изо­бражений.

Целью данной работы является автомати­зация анализа видео и фотоизображений микро­скопических датчиков, полученных разными ме­тодами для контроля полей рассеяния магнитных головок и сигналограмм.

Контролируемыми параметрами могут быть размеры, форма, расположение и переме­щение микроспокических объектов внутри дат­чика.

Разработаны алгоритмы для выделения цельных непрерывных объектов, основанные на теории графов, а именно, на волновом принципе нахождения пути с минимальным количеством вершин.

Для дисперсионного анализа микрофото­графий разработано программное средство MJ_FOTOSCAN [14]. Работа программы состоит из 2-х основных этапов: оцифровки и анализа. После оцифровки микрофотографий следует этап их распознавания и анализа количества и размера агрегатов МЖ. Разработанная программа произ­водит следующие операции: преобразует фото­графию в серой цветовой гамме (градация серого цвета) в монохромное изображение; полученное монохромное изображение подвергается после­дующему распознаванию и анализу. Методика анализа дискретизированного черно-белого изо­бражения основана на выделении отдельных групп черных точек, которые непосредственно соединены друг с другом, то есть являются со­седними по горизонтали и вертикали. После этого программа строит диаграмму распределения аг­регатов по размерам. На основании полученной диаграммы можно сделать вывод о возможности применения данной МЖ для получения датчиков магнитного поля и оценить их чувствительность.

Алгоритм процесса распознавания, анализа и моделирования динамики движения объектов на изображениях состоит из основных шагов:

1)  получение исходного изображения (пу­тем сканирования, видеокамера, Web-камера,
фотографирования, снятия информации с сенсор­ных датчиков и т.п.);

2)   предобработка изображения, которая включает этапы нормализации и сегментации:

2.1) нормализация изображения (в том числе регистрация изображений, нормализация яркости, фильтрация изображения, бинаризация изображения, преобразование цветного изобра­жения в тоновое, устранение шумов, выравнива­ние гистограммы яркости и т.п.);

2.2) сегментация изображения для выде­ления объектов и областей, представляющих ин­терес для решения поставленной задачи;

2.2.1) обработанное изображение состоит из двух цветов (черного и белого). Выполняется поиск ограниченных областей черного цвета, и при нахождении выполняется заливка объекта в уникальный цвет палитры RGB;

2.2.2) после заливки объекта на изображе­нии информация о его месте нахождения и цвете выбранной заливки записывается в базу данных;

2.2.3) генерация нового, уникального цве­та, повтор выполнения первой операции. Так как залитые области на изображении имеют уже не черный цвет, вследствие чего продолжаемая об­работка изображения игнорирует найденные объ­екты и продолжает поиск новых, закрашенных в черный цвет;

2.2.4) на данном этапе мы имеем изобра­жение, на котором объекты закрашены в разные цвета и информация о «точке столкновения» с объектом и цвете заливки записана в базу дан­ных. Далее выполняется последовательное чте­ние записей и производится анализ каждой закрашенной области на изображении, при котором вычисляются точные координаты границ (верти­кальных и горизонтальных), производится точ­ный подсчет количества пикселей объекта и об­раз, преобразованный в массив, состоящий из координат каждой точки закрашенной области, записываются в базу данных. Данный набор опе­раций применяется к каждому объекту, в резуль­тате образы каждой области изображения хранят­ся в базе данных;

2.2.5) применение алгоритмов предобра­ботки изображений к выделенным областям (вы­деление остова, выделение контура и т.п.).

3)   повторение выполнения первых двух шагов с интервалом времени, необходимым для выполнения операций получения и обработки изображения. По достижению нужного количест­ва обработанных изображений переходим к сле­дующему шагу распознавания образов;

4) применение одного или нескольких ал­горитмов распознавания к полученным моделям объектов изображений, хранящихся в базе дан­ных, по которым со 100% точностью можно вос­становить каждое исходное черно-белое изобра­жение. К объектам, хранящимся в таком виде можно применить любой способ описания, срав­нения и сопоставления друг с другом;

5) поиск подобных объектов, находящихся на разных изображениях по выбранному методу сравнения и условий подобия. Построение гео­метрической модели движения с учетом времени и свойств объекта. Построение визуальной моде­ли движения объектов на основе геометрической модели и образа объекта, хранящегося в базе данных. Данный этап можно производить парал­лельно с остальными этапами моделирования и динамически, с небольшим отставанием во вре­мени следить за движением изучаемого объекта и отображать результаты в режиме реального вре­мени.

Программная реализация описанного алго­ритма основана на использовании сервера баз данных с реляционной архитектурой на основе MS SQL Server 2000.

СПИСОК ЛИТЕРАТУРЫ:

  1. А.с. 943618 (CCCР), Опубл. в Б.И.,1982, N 28.
  2. А.с. 949558 (CCCР), Опубл. в Б.И.,1982, N 29
  3. А.с. 1483485 (CCCР), Опубл. в Б.И.,1989, N 20
  4. А.с. 1465843 (CCCР), Опубл. в Б.И.,1989, N 10
  5. А.с. 940049 (CCCР), Опубл. в Б.И.,1982, N 24
  6. А.с. 966735 (CCCР), Опубл. в Б.И.,1982, N 38
  7. А.с. 1132213 (CCCР), Опубл. в Б.И.,1984, N 48
  8. Шагрова Г.В. Магниточувствительные жидкости для визуализации дефектов //Сборник научных трудов «10-я юбилейная международная Плесская конференция по магнитным жидкостям», Плес, Россия, сентябрь 2002. с. 172-177
  9. Шагрова, Г. В. Визуализация и определение полей рассеяния магнитных сигналограмм //11- международная Плесская конференция по магнитным жидкостям: сб. науч. тр./ Плес, сентябрь, 2004. - с.345 -350.
  10. А. с. 741137 (CCCР) Опубл. Б.И.,1980, N 22
  11. Скибин, Ю. Н., Чеканов В. В. Использование двойного лучепреломления в феррожидкости для построения спектра магнитных полей Магнитная гидродинамика, 1977 -. № 2, с. 137 - 138.
  12. Патент РФ 2005310 Опубл. в Б.И., 1993, N 47-48.
  13. Патент РФ 2019853 Опубл. в Б.И., 1994, N 17.
  14. Дроздова В.И., Федоров С.О. Программный комплекс для анализа дисперсного состава многокомпонентных систем// Компьютерное моделирование 2005 /Материалы VI международной конференции, Санкт-Петербург, 2005г. С. 361 - 363.


ПЛАЦЕНТАРНАЯ ЩЕЛОЧНАЯ ФОСФАТАЗА – МАРКЕР ЭМБРИОНАЛЬНЫХ И МАЛИГНИЗИРОВАННЫХ ТКАНЕЙ

ПЛАЦЕНТАРНАЯ ЩЕЛОЧНАЯ ФОСФАТАЗА – МАРКЕР ЭМБРИОНАЛЬНЫХ И МАЛИГНИЗИРОВАННЫХ ТКАНЕЙ Плацентарную щелочную фосфатазу (ПЩФ) относят к белкам, ассоциированным с беременностью и опухолевым ростом. ПЩФ образуется в плаценте и фетальных тканях, в крови беременных женщин выявляется с 10–14 недель в количестве от 1,0 до 40,0 Ед/л, сохраняясь в кровотоке после родов в течение 10–14 дней. ПЩФ является маркёром герминогенных опухолей, обнаруживается в биологических жидкостях, эпителиальных клетках, фибробластах стромы и эндотелии новообразующихся сосудов опухолевой ткани при paке лёгкого и других органов, что следует учитывать при назначении лечения. ...

23 09 2023 23:15:36

FORMATION AND FUNCTIONING OF URBAN ENVIRONMENTAL COMPLEX IN THE EUROPEAN NORTH

FORMATION AND FUNCTIONING OF URBAN ENVIRONMENTAL COMPLEX IN THE EUROPEAN NORTH Статья в формате PDF 122 KB...

20 09 2023 3:13:11

Целиакия – современные представления о патогенезе и классификация (обзор)

Целиакия – современные представления о патогенезе и классификация (обзор) Целиакия – энтеропатия, обусловленная развитием неадекватной иммунной реакции в ответ на поступление глютена – белка, содержащегося в злаковых, – в просвет тонкой кишки. Распространенность заболевания составляет 0,5-1,0 % в популяции. Большинство больных являются носителями мутировавшего лейкоцитарного гена DQ2/DQ8. В обзоре обсуждаются современные представления о патогенезе целиакии и классификация Marsh, дополненная Oberhuber. «Золотым стандартом» диагностики целиакии является биопсийное исследование. Диагностически значимыми морфологическими критериями целиакии являются атрофия ворсинок слизистой оболочки тонкой кишки, гиперплазия крипт увеличение числа межэпителиальных лимфоцитов, лимфо-плазмоцитарная инфильтрация собственной пластинки. В плане лечения наиболее эффективна строгая аглютеновая диета, обсуждается возможность применения заместительной ферментной терапии. ...

18 09 2023 11:44:25

СТВОЛОВЫЕ КЛЕТКИСК: ИЗОБРЕТЕНИЯ, ПАТЕНТЫ, ФИРМЫ

СТВОЛОВЫЕ КЛЕТКИСК: ИЗОБРЕТЕНИЯ, ПАТЕНТЫ, ФИРМЫ Статья в формате PDF 120 KB...

13 09 2023 2:12:16

ПРОМЫШЛЕННОЕ ЗАГРЯЗНЕНИЕ ПОЧВ Г. О. ШУИ

ПРОМЫШЛЕННОЕ ЗАГРЯЗНЕНИЕ ПОЧВ Г. О. ШУИ Статья в формате PDF 250 KB...

10 09 2023 18:57:21

ВЫБОР СПОСОБА ОБРАБОТКИ ДЕТАЛЕЙ ГИДРОУДАРНИКА

ВЫБОР СПОСОБА ОБРАБОТКИ ДЕТАЛЕЙ ГИДРОУДАРНИКА Статья в формате PDF 284 KB...

09 09 2023 2:13:43

МОРФОЛОГИЧЕСКИЕ ОСНОВЫ ФОРМИРОВАНИЯ ИММУНИТЕТА

МОРФОЛОГИЧЕСКИЕ ОСНОВЫ ФОРМИРОВАНИЯ ИММУНИТЕТА Статья в формате PDF 152 KB...

06 09 2023 2:34:43

ПРОБЛЕМА РАСПРОСТРАНЕНИЯ ЧУЖЕРОДНЫХ ОБЫЧАЕВ ВО ВНЕКУЛЬТУРНОМ ПРОСТРАНСТВЕ

ПРОБЛЕМА РАСПРОСТРАНЕНИЯ ЧУЖЕРОДНЫХ ОБЫЧАЕВ ВО ВНЕКУЛЬТУРНОМ ПРОСТРАНСТВЕ Данная статья посвящена проблеме отношений между культурами европейских стран и культурой ислама. В статье отмечается, что на фоне упадка христианской культуры в европейскую среду проникают такие обычаи, которые для европейской цивилизации исторически чужды, а главное, опасны для духовного здоровья европейских народов. Единственным средством для противостояния таким негативным явлением является возрождение собственной культуры. ...

05 09 2023 16:11:38

ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ХРОМОВОГО ДУБЛЕНИЯ

Статья в формате PDF 132 KB...

04 09 2023 15:52:49

ПРОБЛЕМЫ ВЫСШЕГО ОБРАЗОВАНИЯ

ПРОБЛЕМЫ ВЫСШЕГО ОБРАЗОВАНИЯ Статья в формате PDF 125 KB...

01 09 2023 14:28:34

КЛОЧКОВ ЕВГЕНИЙ ПЕТРОВИЧ

КЛОЧКОВ ЕВГЕНИЙ ПЕТРОВИЧ Статья в формате PDF 189 KB...

30 08 2023 14:10:41

ВЛИЯНИЕ КУРСА ЭКСТРЕМАЛЬНЫХ ВОЗДУШНЫХ КРИОГЕННЫХ ТРЕНИРОВОК В РЕЖИМЕ одна ПРОЦЕДУРА В ДЕНЬ НА ПАРАМЕТРЫ СОСТАВА ТЕЛА ЧЕЛОВЕКА

ВЛИЯНИЕ КУРСА ЭКСТРЕМАЛЬНЫХ ВОЗДУШНЫХ КРИОГЕННЫХ ТРЕНИРОВОК В РЕЖИМЕ одна ПРОЦЕДУРА В ДЕНЬ НА ПАРАМЕТРЫ СОСТАВА ТЕЛА ЧЕЛОВЕКА Проведен анализ изменений состава тела вследствие курса экстремальных воздушных криогенных тренировок (ОВКТ) в камере закрытого типа при t = –110 ± 5 °С. Исследован состав тела 35 человек (87 % выборки), до и после курса ОВКТ, состоявшего из 10 сеансов в режиме 1 процеДypa в день. Анализ состава тела проводили на биоимпедансном анализаторе АВС-02 «Медасс». Статистическая обработка проведена с расчетом медианы (Ме), значений исследуемых параметров в первой (Q25 %) и последней (Q75 %) квартилях распределения, сравнением полученных данных с использованием непараметрического критерия Манна Уитни Вилкоксона (U). Выявлено снижение значений Ме для жировой массы и ее возрастание для мышечной и активной клеточной массы, что отражает как правило формирование более высокого уровня здоровья и адаптированности исследуемых к факторам среды. Модуляция состава тела в результате курса ОВКТ зависит от исходного функционального состояния исследуемых, однако направленность изменений данных биометрии остается позитивной. ...

21 08 2023 12:14:56

ПОСТРОЕНИЕ СИСТЕМАТИКИ МЕТОДОВ ПРИНЯТИЯ РЕШЕНИЙ

ПОСТРОЕНИЕ СИСТЕМАТИКИ МЕТОДОВ ПРИНЯТИЯ РЕШЕНИЙ Статья в формате PDF 207 KB...

19 08 2023 20:42:23

ПРИОРИТЕТНОЕ ЗНАЧЕНИЕ МАЛОЭТАЖНОГО СТРОИТЕЛЬСТВА

ПРИОРИТЕТНОЕ ЗНАЧЕНИЕ МАЛОЭТАЖНОГО СТРОИТЕЛЬСТВА Статья в формате PDF 275 KB...

16 08 2023 13:41:48

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::

АНАТОМИЯ УРЕТРОВЕЗИКАЛЬНОГО СЕГМЕНТА И ПРЕДСТАТЕЛЬНОЙ ЖЕЛЕЗЫ У МУЖЧИН, ОТНОСЯЩИХСЯ К РАЗЛИЧНЫМ РАСАМ

Проведено исследование 63 препаратов уретровезикального сегмента и предстательной железы мужчин первого зрелого периода, относящихся к различным расам: европеоидам и монголоидам. Результаты: 1. межмочеточниковая складка Мерсье, расстояние от внутреннего отверстия уретры до устья мочеточника, площадь треугольника Льето достоверно больше у монголоидов при отсутствии достоверной разницы показателей «уретрального» угла треугольника Льето. 2. уретровезикальный угол, длина супрамонтанной части простатического отдела уретры и длина всего простатического отдела уретры у монголоидов достоверно больше. 3. семенной бугорок у представителей монголоидной расы в 85,7% представлял собой утолщение центральной складки простатического отдела уретры, наличие простатической маточки не зарегистрировано ни в одном случае. Семенной бугорок представителей европеоидной расы был более выражен и представлял собой анатомическое образование бόльшими размерами, простатическая маточка зарегистрирована в 60% случаев. 4. общий объем простаты у европеоидов и монголоидов не отличался, однако, центральная ее доля у монголоидов достоверно больше, а переходная достоверно меньше.

ЭХОГРАФИЧЕСКИЕ МАРКЕРЫ ВНУТРИУТРОБНОЙ ИНФЕКЦИИ

Одной из важнейших проблем современной перинатологии является прогрессирующий рост инфекционной патологии у плода и новорожденного. Целью данной работы являлась комплексная ультразвуковая оценка фето-плацентарной системы у беременных с высоким инфекционным индексом для прогнозирования степени тяжести внутриутробного инфицирования у новорожденного. Обследовано 123 беременных в сроке гестации 30-36 недель. В зависимости от тяжести состояния все новорожденные ретроспективно были разделены на 4 группы. В контрольную (1 группа) вошли новорожденные от матерей с неосложненной беременностью, состояние ребенка при рождении удовлетворительное. В основную (1 – 4 группы) вошли новорожденные от матерей с высоким инфекционным индексом, с локальными или генерализованными проявлениями внутриутробной инфекции. В результате проведенного исследования выявлены эхографические маркеры амнионита, плацентита и собственно инфекционного поражения плода, которое наиболее значимо для прогнозирования рождения ребенка с ВУИ. Патологические показатели биофизической активности, допплерометрия отражают системные нарушения в состоянии плода, его дисстресс. Таким образом, чем больше эхографических маркеров внутриутробного инфицирования встречается у плода, тем более вероятно рождение ребенка с признаками ВУИ.

ОСОБЕННОСТИ РЕАКЦИИ КОСТНОГО МОЗГА НА ОСТРУЮ И ХРОНИЧЕСКУЮ КРОВОПОТЕРИ

Сравнительным исследованием костного мозга больных, перенесших острую и хроническую кровопотери, установлено, что после острой кровопотери общее количество миелокариоцитов, количества эритрокариоцитов и гранулоцитов были существенно меньше аналогичных показателей морфологического состава костного мозга после хронической кровопотери. Уменьшение содержания гранулоцитарных миелокариоцитов после острой кровопотери было обусловлено резким снижением количества их созревающих форм, чего не наблюдалось после хронической кровопотери. При этом содержание в костном мозге зрелых форм гранулоцитов было одинаковым после обоих видов кровопотери. Уменьшение содержания в костном мозге после острой кровопотери созревающих форм гранулоцитов сопровождалось значительным уменьшением индекса созревания нейтрофилов, что свидетельствует об ускорении их созревания и выброса в кровеносное русло. Для хронической кровопотери была хаpaктерна эритроидная гиперплазия костного мозга.