ТЕРМОДИНАМИЧЕСКИЕ КОНСТАНТЫ ДИССОЦИАЦИИ ПРОТОНИРОВАННЫХ ОСНОВАНИЙ > Полезные советы
Тысяча полезных мелочей    

ТЕРМОДИНАМИЧЕСКИЕ КОНСТАНТЫ ДИССОЦИАЦИИ ПРОТОНИРОВАННЫХ ОСНОВАНИЙ

ТЕРМОДИНАМИЧЕСКИЕ КОНСТАНТЫ ДИССОЦИАЦИИ ПРОТОНИРОВАННЫХ ОСНОВАНИЙ

Танганов Б.Б. Багаева Т.В. Ангапов В.Д. Алексеева И.А. Разработана методика определения констант диссоциации протонированных трехкислотных оснований, отличающаяся новым подходом к оценке и учету концентраций всех равновесных частиц, для расчета ионной силы раствора. Статья в формате PDF 152 KB

Термодинамические константы диссоциации протонированного основания определяются следующими соотношениями [11]:

            (1)

В уравнении (1)  - активность ионов лиония, то есть сольватированного иона водорода, в последующем примем обозначение а(лиония), в любой точке потенциометрического титрования;  - равновесные концентрации нейтрального и протонированного трехкислотного основания в процессе титрования сильной кислотой;  - коэффициенты активности нейтральной и протонированных форм полиоснования.

Как отмечалось ранее [10], известные методы оценок ионной силы при кислотно-основном равновесии [2,4,13] основаны на использовании концентрации первой ионизированной частицы, например, [ВH+] для двухкислотного основания. Было показано [3,9,10,11], что в расчетах констант диссоциации не следует пренебрегать равновесными концентрациями остальных ионов, так как их величины в различных точках титрования сопоставимы с концентрацией первого протонированного иона, а из данных табл. 2 и рис. 1 видно, что в процессе нейтрализации концентрации последующих ионов (например, [ВH33+]) даже превышают таковые иона [ВH+].

Наиболее приемлемым способом оценки ионной силы, определяемой с учетом равновесных концентраций всех заряженных частиц, является представление кривой титрования основания в логарифмических координатах [9,10,11]. При этом равновесные концентрации всех частиц , образующихся при титровании трехкислотного основания сильной одноосновной пара-толуолсульфокислотой, могут быть определены на диаграммах -lg а(лиония) - lgC. Оценка значений коэффициентов активности f0, f1, f2, f3 проводится по более оптимальному методу Дэвиса [12]:

                                       (2)

Рис. 1. Логарифмическая диаграмма процесса титрования 0.03904 н. раствора 3,4,4´-триаминодифенилоксида 0.1541 н. раствором хлорной кислоты в среде ацетона, дающая возможность определения концентраций равновесных частиц:

1-1: lg [B], 2-2: lg[BH+], 3-3: lg[BH22+], 4-4: lg[BH33+].

Измерения ЭДС и потенциометрическое титрование в среде ацетона осуществляли при 25.0 ± 0.20С на рН-метре-милливольтметре METROHM-632 (Швейцария). Растворитель очищен и обезвожен по известным методикам [5,6]. Содержание воды, определенное модифицированным методом К.Фишера [8], не превышало для ацетона ±0.01 мас.%.

В табл. 1 приведены данные измерения ЭДС цепи (I) в среде ацетона в зависимости от моляльной концентрации хлорной кислоты, а также результаты оценки степени диссоциации HClО4 и исходные величины для расчета стандартного потенциала цепи.

Таблица 1. Изменение ЭДС цепи (I) в зависимости от моляльной концентрации хлорной кислоты (m, моль HClO4/1000г ацетона) и данные для определения Е0 цепи (I)

m

E, B

α (HClO4)

-0.0595×lg ()

(m×α)0.5

0.024375

0.523

0.926559

-0.097947836

0.150282685

0.620948

0.0121875

0.518

0.955441

-0.115065961

0.107909368

0.633066

0.0060937

0.514

0.973990

-0.132480572

0.077040285

0.646481

0.0030468

0.509

0.984219

-0.150122322

0.054760561

0.659122

0.0015234

0.504

0.990425

-0.167871182

0.038843450

0.671871

0.0007617

0.496

0.993475

-0.185703007

0.027508729

0.681703

Степень диссоциации хлорной кислоты может быть оценена по уравнению (3) [1,9,10,11].

               (3)

Величина , равная разности  ( ), определена по программе «mnk» (метод наименьших квадратов) по зависимости  при lg m = 0. Получена величина  = 0.5515 с коэффициентом регрессии r = 0.9936.

Значение стандартного потенциала цепи (I) определено по авторской компьютерной программе «cubic» по приближению функции  при , где .

, r = 0.9999.

Таким образом, получена величина стандартного потенциала цепи (I) в среде ацетона, равная Ео = 0.7127 В. Попутно отметим, что показатель константы диссоциации хлорной кислоты в ацетоне равен: .

Стандартный потенциал цепи (I), наряду с равновесными концентрациями нейтральной молекулы основания и заряженных частиц , образующихся в процессе титрования основания, оцененных по табл.2 и рис.1, и их коэффициентами активностей , дают возможность определения термодинамических констант кислотности протонированных триоснований в среде органических растворителей.

Оценка активности лионий-ионов в процессе титрования основания возможна по уравнению Нернста:

.

Рассматриваемая методика, отличающаяся от известных применением логарифмических зависимостей при оценке ионной силы и коэффициентов активности ионов, была апробирована на примере 1,3-дифенилгуанидина (ДФГ) в среде ДМФА. В литературе [7] известна величина рКа (ДФГ/ДМФА) = 9.1. Нами было [11] получено значение рКа (ДФГ/ДМФА) = 9.15 ± 0.03, свидетельствующее о достаточной надежности и воспроизводимости предлагаемого метода.

В табл. 2 сведены все исходные данные для расчетов констант диссоциации по уравнению (1) при титровании 0.03904 н. раствора 3,4,4´-триаминодифенилоксида, широко применяемого в синтезе полибензимидазолов, 0.1541 н. раствором хлорной кислоты в среде ацетона.

Как видно из таблицы и рисунка, равновесные концентрации частиц, находящихся в титруемом растворе, вполне сопоставимы. Поэтому в расчетах рКа все концентрации должны быть учтены. Протонированные трехкислотные основания хаpaктеризуются близостью констант кислотности, подтверждаемой одним совместным скачком потенциала на кривой потенциометрического титрования, которую мы здесь не приводим.

Рассчитанные в соответствующих буферных областях величины термодинамических констант диссоциации протонированного 3,4,4´-триаминодифенилметана в среде ацетона равны: рК1 = 7.99 ± 0.11, рК2 = 6.94 ± 0.11, рК3 = 5.82 ± 0.09.

Разработанная методика определения термодинамических констант кислотности протонированных оснований в среде органических растворителей вполне приемлема при экспериментальном определении рКа любых трехкислотных оснований при совместной нейтрализации функциональных групп.

Таблица 2. Расчет констант диссоциации протонированного 3,4,4´-триаминодифенилоксида в среде ацетона по ур.(1)

V, мл

Е, В

-lg a (лиония)

[B]

[BH+]

[BH22+]

[BH33+]

I0.5

0.2

0.192

8.7512

0.029282

0.017193

0.003022

0.000389

0.128035

0.4

0.197

8.6672

0.029282

0.020863

0.003668

0.000472

0.141041

0.6

0.201

8.6000

0.029282

0.024356

0.004282

0.000552

0.152391

0.8

0.206

8.5159

0.029011

0.029282

0.005196

0.000669

0.167464

1.0

0.211

8.4319

0.023907

0.029282

0.006305

0.000812

0.175799

1.2

0.216

8.3479

0.019701

0.029282

0.007651

0.000986

0.185412

1.4

0.221

8.2638

0.016235

0.029282

0.009284

0.001196

0.196446

1.6

0.226

8.1798

0.013379

0.029282

0.011266

0.001451

0.209055

1.8

0.232

8.0799

0.010607

0.029282

0.014210

0.001831

0.226495

2.0

0.237

7.9949

0.008741

0.029282

0.017244

0.002221

0.243158

2.2

0.243

7.8941

0.006930

0.029282

0.021751

0.002802

0.265994

2.4

0.252

7.7428

0.004892

0.027826

0.029282

0.003970

0.300566

2.6

0.257

7.6588

0.004031

0.022931

0.029282

0.004817

0.302830

2.8

0.263

7.5580

0.003196

0.018180

0.029282

0.006076

0.308214

3.0

0.270

7.4403

0.002437

0.013866

0.029282

0.007966

0.318348

3.2

0.277

7.3227

0.001859

0.010575

0.029282

0.010445

0.332948

3.4

0.284

7.2050

0.001418

0.008066

0.029282

0.013695

0.352454

3.6

0.292

7.0706

0.001040

0.005918

0.029282

0.018664

0.381461

3.8

0.298

6.9697

0.000825

0.004692

0.029282

0.023542

0.408474

4.0

0.305

6.8521

0.000629

0.003578

0.027778

0.029282

0.434872

4.2

0.312

6.7344

0.000480

0.002729

0.021186

0.029282

0.418934

4.4

0.319

6.6168

0.000366

0.002082

0.016159

0.029282

0.406358

Продолжение табл. 2

V, мл

f1

f2

f3

рК1

рК2

рК3

0.2

0.3811

0.1446

0.05492

8.101

-

-

0.4

0.3498

0.1218

0.04243

8.064

-

-

0.6

0.3252

0.1052

0.03404

8.032

-

-

0.8

0.2959

0.0870

0.02558

7.991

-

-

1.0

0.2812

0.0785

0.02192

7.969

-

-

1.2

0.2653

0.0698

0.01838

7.944

-

-

1.4

0.2485

0.0612

0.01508

7.915

-

-

1.6

0.2310

0.0528

0.01208

7.883

-

-

1.8

0.2093

0.0433

0.00895

-

7.080

-

2.0

0.1910

0.0360

0.00678

-

7.040

-

2.2

0.1692

0.0281

0.00469

-

6.986

-

2.4

0.1421

0.0198

0.00275

-

6.908

-

2.6

0.1405

0.0193

0.00266

-

6.903

-

2.8

0.1369

0.0183

0.00245

-

6.892

-

3.0

0.1304

0.0166

0.00211

-

6.870

-

3.2

0.1217

0.0144

0.00171

-

6.839

-

3.4

0.1113

0.0120

0.00130

-

-

5.909

3.6

0.0980

0.00929

0.000880

-

-

5.851

3.8

0.0875

0.00736

0.000620

-

-

5.800

4.0

0.0786

0.00592

0.000446

-

-

5.752

4.2

0.0838

0.00675

0.000543

-

-

5.781

4.4

0.0882

0.00749

0.000636

-

-

5.804

СПИСОК ЛИТЕРАТУРЫ:

  1. Александров В.В., Лебедь В.И., Шихова Т.М., Заславский Б.Г. // Электрохимия.-1968. -Т.4.- №6.- С.711.
  2. Альберт А., Сержент Е. Константы ионизации кислот и оснований.- М.-Л.: -Химия.- 1964.- 262 с.
  3. Анорганикум. -М.: Мир.-1984. -Т.2. -С.120.
  4. Бейтс Р. Определение рН. Теория и пpaктика. - Л.: Химия.- 1972.- 400 с.
  5. Вайсбергер А., Проскауэр Э., Риддик Дж., Тупс Э. Органические растворители /Пер. с англ. М.: Издатинлит.- 1958.- 519 с.
  6. Гордон А., Форд Р. Спутник химика. -М.: Мир.-1976.- 541 с.
  7. Крешков А.П. Аналитическая химия неводных растворов. -М.: Химия.- 1982.-120 с.
  8. Танганов Б.Б. Химия и хим. технология. Деп. ОНИИТЭХим.1984. №976 хпД84).
  9. Танганов Б.Б. Химические методы анализа: Уч. пособ.-Улан-Удэ.- 2005.-550 с.
  10. Танганов Б.Б., Алексеева И.А. //ЖОХ.-2005.-Т.75.- Вып.11.-С.1775.
  11. Танганов Б.Б., Алексеева И.А. //ЖОХ.-2006.-Т.76.- Вып.11.-С. 1800.
  12. Davies C.W. // J.Chem.Soc.-1938.- P.2093.
  13. Speakman J.C. //J.Chem.Soc.-1940.- P.855.


КОМПЬЮТЕРНЫЙ АНАЛИЗ ОСОБЕННОСТЕЙ ВТОРИЧНЫХ СТРУКТУР ГЛЮКОАМИЛАЗ ИЗ ASPERGILLUS AWAMORI И SACCHAROMYCOPSIS FIBULIGERA

КОМПЬЮТЕРНЫЙ АНАЛИЗ ОСОБЕННОСТЕЙ ВТОРИЧНЫХ СТРУКТУР ГЛЮКОАМИЛАЗ ИЗ ASPERGILLUS AWAMORI И SACCHAROMYCOPSIS FIBULIGERA С помощью программы компьютерного моделирования MolScript на базе данных рентгеноструктурного анализа (РСА) осуществлено сравнение вторичных структур глюкоамилаз из Aspergillus awamori и Saccharomycopsis fibuligera. Получены данные о типах вторичной структуры, количественном соотношении, топологии упорядоченных и нерегулярных участков. ...

19 02 2024 19:43:12

ИОННОЕ АЗОТИРОВАНИЕ

Статья в формате PDF 259 KB...

14 02 2024 21:13:40

Экология и здоровье

Экология и здоровье Статья в формате PDF 245 KB...

11 02 2024 2:24:45

ОШИБКИ ПРИ ВЫЧИСЛЕНИИ РАБОТЫ

ОШИБКИ ПРИ ВЫЧИСЛЕНИИ РАБОТЫ Работу вычисляют по формуле: dA=FdS  или A=FS. Но эта формула применима только для силы вызывающей изменение кинетической энергии тела. Для других сил (трения, упругой деформации, центростремительных) работу нужно вычислять по формуле: , где  - импульс силы. ...

08 02 2024 11:49:38

ШИГАРЕВ ВЕНИАМИН МАКСИМОВИЧ

ШИГАРЕВ ВЕНИАМИН МАКСИМОВИЧ Статья в формате PDF 68 KB...

05 02 2024 14:15:10

ПЕРЕРАБОТКА ПЛАСТИКОВЫХ ОТХОДОВ

ПЕРЕРАБОТКА ПЛАСТИКОВЫХ ОТХОДОВ Статья в формате PDF 267 KB...

04 02 2024 12:22:58

КИНОСЕМАНТИКА ИЛИ МОНТАЖНАЯ СХЕМА «ВПЕЧАТЛЕНИЙ»

КИНОСЕМАНТИКА ИЛИ МОНТАЖНАЯ СХЕМА «ВПЕЧАТЛЕНИЙ» Статья в формате PDF 109 KB...

29 01 2024 13:45:33

WIMAX – ЛИДИРУЮЩИЙ КОММЕРЧЕСКИЙ ПРОЕКТ

WIMAX – ЛИДИРУЮЩИЙ КОММЕРЧЕСКИЙ ПРОЕКТ Статья в формате PDF 308 KB...

28 01 2024 13:11:16

О ПРИЧИНАХ И УСТРАНЕНИИ НЕВОСПРОИЗВОДИМОСТИ КОНСТАНТ ДИССОЦИАЦИИ КВЕРЦЕТИНА

О ПРИЧИНАХ И УСТРАНЕНИИ НЕВОСПРОИЗВОДИМОСТИ КОНСТАНТ ДИССОЦИАЦИИ КВЕРЦЕТИНА Известные значения констант диссоциации одного из самых распространенных природных флавоноидов – кверцетина – отличаются крайней невоспроизводимостью. Одной из причин этого следует считать легкое окисление кверцетина в процессе титрования кислородом воздуха. Для устранения этого эффекта предложен модифицированный вариант потенциометрического титрования с барботированием инертного газа (азот) через титруемый раствор с добавкой в него неионогенного детергента. Полученное таким способом значение pKaI кверцетина равно 6.62 ± 0.04. Из этого следует принципиально важный вывод: в нейтральной среде (при рН ~ 7) кверцетин и, возможно, другие флавонолы, пpaктически полностью диссоциированы. ...

22 01 2024 12:40:53

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::