ПРИМЕНЕНИЕ ПОЛИНОМИАЛЬНОЙ СИСТЕМЫ КЛАССОВ ВЫЧЕТОВ ДЛЯ ПОВЫШЕНИЯ СКОРОСТИ ФУНКЦИОНИРОВАНИЯ СПЕЦПРОЦЕССОРА АДАПТИВНЫХ СРЕДСТВ ЗАЩИТЫ ИНФОРМАЦИИ > Полезные советы
Тысяча полезных мелочей    

ПРИМЕНЕНИЕ ПОЛИНОМИАЛЬНОЙ СИСТЕМЫ КЛАССОВ ВЫЧЕТОВ ДЛЯ ПОВЫШЕНИЯ СКОРОСТИ ФУНКЦИОНИРОВАНИЯ СПЕЦПРОЦЕССОРА АДАПТИВНЫХ СРЕДСТВ ЗАЩИТЫ ИНФОРМАЦИИ

ПРИМЕНЕНИЕ ПОЛИНОМИАЛЬНОЙ СИСТЕМЫ КЛАССОВ ВЫЧЕТОВ ДЛЯ ПОВЫШЕНИЯ СКОРОСТИ ФУНКЦИОНИРОВАНИЯ СПЕЦПРОЦЕССОРА АДАПТИВНЫХ СРЕДСТВ ЗАЩИТЫ ИНФОРМАЦИИ

Калмыков И.А. Хайватов А.Б. Тимошенко Л.И. Гахов В.Р. Статья в формате PDF 127 KB

Проблема исследований: В ближайшем будущем роль компьютерных систем будет всемерно усиливаться. При этом возникают новые задачи по разработке и созданию адаптивных средств защиты информации (АСЗИ) в вычислительных сетях от несанкционированного доступа (НСД).

Решение проблемы:

В последние годы наблюдается тенденция все более всестороннего применения алгебраических систем, определяемых в расширенных полях Галуа, при построении адаптивных средств защиты информации. Это обуславливает возможность использования следующих криптографических преобразований:

- сложение элементов по модулю порождающего полинома g(z);

- умножение элементов поля по модулю порождающего полинома g(z);

- возведение элементов в степень по модулю g(z).

Применение полиномиальной системы классов вычетов (ПСКВ) позволяет повысить эффективность данных систем с точки зрения обеспечения высокой скорости  работы криптографического устройства.

Если в качестве оснований алгебраической системы выбрать минимальные многочлeны  поля , то полином A(z), удовлетворяющий условию  где  , представляется в виде вектора

,    (1)

где , .

Для двух полиномов, принадлежащих полному диапазону A(z) =   и B(z) = , справедливо [1,2]:

,        (2)

,                 (3)

                   (4)


где   - линейная свертка; , .

Следовательно, ПСКВ может быть использована при реализации криптографических преобразований.

Пусть для выработки М-последовательности задан порождающий полином , а для реализации криптографических преобразований в поле GF(27) - порождающий полином . Тогда для одновременного обеспечения информационной скрытности и высокой скорости работы спецпроцессора АСЗИ будут использоваться 7-разрядные элементы поля GF(27). В этом случае сформированная последовательность символов в виде двоичных векторов длиной 7 бит является псевдослучайной последовательностью (ПСП) элементов конечного поля GF(27). Так как сформированная последовательность является последовательностью элементов мультипликативной группы расширенного поля Галуа GF(27), то к ним возможно применение криптографических преобразований.

Пусть криптографические преобразования определяются выражением

.  (2)

В таблице представлено состояние первых 15 ячеек памяти генератора двоичной ПСП, задаваемой порождающим полиномом .

Таблица 1

Ячейки памяти генератора М-последовательности

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

1

0

0

0

1

1

0

0

1

1

0

0

1

1

0

2

1

1

0

0

0

1

1

0

0

1

1

0

0

1

1

Так как для реализации (2) необходимо две ПСП элементов поля GF(27), то значение первой ПСП снимаем с первой по седьмую ячеек, согласно выражения

,                  (3)

а значение второй ПСП с восьмой по четырнадцатую ячеек генератора М-последовательности

.           (4)

Тогда имеем следующие элементы поля GF(27) на первых двух тактах работы генератора:

1 такт          g11(z)=0110001=z5+z4+1 ;                 g21(z)=1100110=z6+z5+z2+z ;           

2 такт          g12(z)=1100011=z6+z5+z+1;              g22(z)=1001100=z6+z3+z2;

Пусть в качестве открытого текста используется 7-битовая последовательность

s(z)=0000011=z+1.

Проведем преобразования согласно (2). Получаем

В качестве ПСКВ выберем алгебраическую систему, определяемую основаниями: ; , . Тогда рабочий диапазон составляет . Представим исходные последовательности в коде ПСКВ и проведем соответствующие преобразования:


Операнды

 

α1(z)

α2(z)

α3(z)

α4(z)

α5(z)

s(z)=z+1

 

х

0

z+1

z+1

z+1

z+1

g11(z)=z5+z4+1

1

0

z3+z2+z+1

z+1

z2

 

+

0

0

z3+z2+z

z2+1

z3+z2

g21(z)=z6+z5+z2+z

0

z+1

z2+1

z

z3+z2

 

0

z+1

z3+z+1

z2+z+1

0

Таким образом, имеем 

Следовательно, применение ПСКВ позволяет обеспечить следующие преимущества [1,3]:

- операции выполняются над остатками независимо по каждому из модулей pi(z), что позволяет повысить быстродействие вычислительной системы;

- операции проводятся над малоразрядными операндами, что позволяет не только повысить быстродействие системы, но и сократить аппаратурные затраты.

СПИСОК ЛИТЕРАТУРЫ:

  1. Калмыков И.А. Математические модели нейросетевых отказоустойчивых вычислительных средств, функционирующих в полиномиальной системе классов вычетов /Под ред. Н.И. Червякова. - М.: ФИЗМАТЛИТ, 2005. - 276 с.
  2. Калмыков И.А., Червяков Н.И., Щелкунова Ю.О., Бережной В.В. Математическая модель нейронных сетей для исследования ортогональных преобразований в расширенных полях Галуа /Нейрокомпьютеры: разработка, применение. №6, 2003. с.61-68с.
  3. Элементы применения компьютерной математики и нейроинформатики /Н.И. Червяков, И.А. Калмыков И.А., В.А. Галкина, Ю.О. Щелкунова, А.А. Шилов; Под ред. Н.И. Червякова. - М.: ФИЗМАТЛИТ, 2003. - 216 с.


ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА СЕМЯН МАСЛИЧНОГО ЛЬНА

ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА СЕМЯН МАСЛИЧНОГО ЛЬНА Статья в формате PDF 138 KB...

30 09 2024 11:39:21

ЭНДОКРИННАЯ СИСТЕМА ЖИВОТНЫХ

ЭНДОКРИННАЯ СИСТЕМА ЖИВОТНЫХ Статья в формате PDF 276 KB...

29 09 2024 5:57:36

ДОЦЕНКО АНАТОЛИЙ ИВАНОВИЧ

ДОЦЕНКО АНАТОЛИЙ ИВАНОВИЧ Статья в формате PDF 271 KB...

28 09 2024 20:59:41

ТЕРМОДИНАМИЧЕСКИЕ КОНСТАНТЫ ДИССОЦИАЦИИ ПРОТОНИРОВАННЫХ ОСНОВАНИЙ

ТЕРМОДИНАМИЧЕСКИЕ КОНСТАНТЫ ДИССОЦИАЦИИ ПРОТОНИРОВАННЫХ ОСНОВАНИЙ Разработана методика определения констант диссоциации протонированных трехкислотных оснований, отличающаяся новым подходом к оценке и учету концентраций всех равновесных частиц, для расчета ионной силы раствора. ...

27 09 2024 13:44:19

СПЕКТРЫ ВОДЫ В РАЗЛИЧНЫХ АГРЕГАТНЫХ СОСТОЯНИЯХ

СПЕКТРЫ ВОДЫ В РАЗЛИЧНЫХ АГРЕГАТНЫХ СОСТОЯНИЯХ Статья в формате PDF 440 KB...

26 09 2024 22:25:47

ПОЖАРООПАСТНОСТЬ ГОРНЫХ ЛЕСОВ ТУВЫ

ПОЖАРООПАСТНОСТЬ ГОРНЫХ ЛЕСОВ ТУВЫ Статья в формате PDF 101 KB...

24 09 2024 17:31:34

ПРОБЛЕМА КЛАССИФИКАЦИИ ПЕДАГОГИЧЕСКИХ ЦЕННОСТЕЙ

ПРОБЛЕМА КЛАССИФИКАЦИИ ПЕДАГОГИЧЕСКИХ ЦЕННОСТЕЙ Статья в формате PDF 115 KB...

19 09 2024 5:16:56

КРИПТОГРАФИЯ – ОТ ИЗБРАННЫХ К ШИРОКИМ МАССАМ

КРИПТОГРАФИЯ – ОТ ИЗБРАННЫХ К ШИРОКИМ МАССАМ Статья в формате PDF 114 KB...

16 09 2024 23:45:26

К НАУЧНОМУ ИЗУЧЕНИЮ ПАРАЛЛЕЛЬНЫХ МИРОВ

К НАУЧНОМУ ИЗУЧЕНИЮ ПАРАЛЛЕЛЬНЫХ МИРОВ Рассмотрено понятие параллельного мира. Выявлены опытные основания его существования. Предсказано пpaктическое использование иных измерений в решении физико-технических проблем, в медицине, трaнcпорте, левитации и проскопии. ...

15 09 2024 16:24:18

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::