ПРИМЕНЕНИЕ ПОЛИНОМИАЛЬНОЙ СИСТЕМЫ КЛАССОВ ВЫЧЕТОВ ДЛЯ ПОВЫШЕНИЯ СКОРОСТИ ФУНКЦИОНИРОВАНИЯ СПЕЦПРОЦЕССОРА АДАПТИВНЫХ СРЕДСТВ ЗАЩИТЫ ИНФОРМАЦИИ > Полезные советы
Тысяча полезных мелочей    

ПРИМЕНЕНИЕ ПОЛИНОМИАЛЬНОЙ СИСТЕМЫ КЛАССОВ ВЫЧЕТОВ ДЛЯ ПОВЫШЕНИЯ СКОРОСТИ ФУНКЦИОНИРОВАНИЯ СПЕЦПРОЦЕССОРА АДАПТИВНЫХ СРЕДСТВ ЗАЩИТЫ ИНФОРМАЦИИ

ПРИМЕНЕНИЕ ПОЛИНОМИАЛЬНОЙ СИСТЕМЫ КЛАССОВ ВЫЧЕТОВ ДЛЯ ПОВЫШЕНИЯ СКОРОСТИ ФУНКЦИОНИРОВАНИЯ СПЕЦПРОЦЕССОРА АДАПТИВНЫХ СРЕДСТВ ЗАЩИТЫ ИНФОРМАЦИИ

Калмыков И.А. Хайватов А.Б. Тимошенко Л.И. Гахов В.Р. Статья в формате PDF 127 KB

Проблема исследований: В ближайшем будущем роль компьютерных систем будет всемерно усиливаться. При этом возникают новые задачи по разработке и созданию адаптивных средств защиты информации (АСЗИ) в вычислительных сетях от несанкционированного доступа (НСД).

Решение проблемы:

В последние годы наблюдается тенденция все более всестороннего применения алгебраических систем, определяемых в расширенных полях Галуа, при построении адаптивных средств защиты информации. Это обуславливает возможность использования следующих криптографических преобразований:

- сложение элементов по модулю порождающего полинома g(z);

- умножение элементов поля по модулю порождающего полинома g(z);

- возведение элементов в степень по модулю g(z).

Применение полиномиальной системы классов вычетов (ПСКВ) позволяет повысить эффективность данных систем с точки зрения обеспечения высокой скорости  работы криптографического устройства.

Если в качестве оснований алгебраической системы выбрать минимальные многочлeны  поля , то полином A(z), удовлетворяющий условию  где  , представляется в виде вектора

,    (1)

где , .

Для двух полиномов, принадлежащих полному диапазону A(z) =   и B(z) = , справедливо [1,2]:

,        (2)

,                 (3)

                   (4)


где   - линейная свертка; , .

Следовательно, ПСКВ может быть использована при реализации криптографических преобразований.

Пусть для выработки М-последовательности задан порождающий полином , а для реализации криптографических преобразований в поле GF(27) - порождающий полином . Тогда для одновременного обеспечения информационной скрытности и высокой скорости работы спецпроцессора АСЗИ будут использоваться 7-разрядные элементы поля GF(27). В этом случае сформированная последовательность символов в виде двоичных векторов длиной 7 бит является псевдослучайной последовательностью (ПСП) элементов конечного поля GF(27). Так как сформированная последовательность является последовательностью элементов мультипликативной группы расширенного поля Галуа GF(27), то к ним возможно применение криптографических преобразований.

Пусть криптографические преобразования определяются выражением

.  (2)

В таблице представлено состояние первых 15 ячеек памяти генератора двоичной ПСП, задаваемой порождающим полиномом .

Таблица 1

Ячейки памяти генератора М-последовательности

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

1

0

0

0

1

1

0

0

1

1

0

0

1

1

0

2

1

1

0

0

0

1

1

0

0

1

1

0

0

1

1

Так как для реализации (2) необходимо две ПСП элементов поля GF(27), то значение первой ПСП снимаем с первой по седьмую ячеек, согласно выражения

,                  (3)

а значение второй ПСП с восьмой по четырнадцатую ячеек генератора М-последовательности

.           (4)

Тогда имеем следующие элементы поля GF(27) на первых двух тактах работы генератора:

1 такт          g11(z)=0110001=z5+z4+1 ;                 g21(z)=1100110=z6+z5+z2+z ;           

2 такт          g12(z)=1100011=z6+z5+z+1;              g22(z)=1001100=z6+z3+z2;

Пусть в качестве открытого текста используется 7-битовая последовательность

s(z)=0000011=z+1.

Проведем преобразования согласно (2). Получаем

В качестве ПСКВ выберем алгебраическую систему, определяемую основаниями: ; , . Тогда рабочий диапазон составляет . Представим исходные последовательности в коде ПСКВ и проведем соответствующие преобразования:


Операнды

 

α1(z)

α2(z)

α3(z)

α4(z)

α5(z)

s(z)=z+1

 

х

0

z+1

z+1

z+1

z+1

g11(z)=z5+z4+1

1

0

z3+z2+z+1

z+1

z2

 

+

0

0

z3+z2+z

z2+1

z3+z2

g21(z)=z6+z5+z2+z

0

z+1

z2+1

z

z3+z2

 

0

z+1

z3+z+1

z2+z+1

0

Таким образом, имеем 

Следовательно, применение ПСКВ позволяет обеспечить следующие преимущества [1,3]:

- операции выполняются над остатками независимо по каждому из модулей pi(z), что позволяет повысить быстродействие вычислительной системы;

- операции проводятся над малоразрядными операндами, что позволяет не только повысить быстродействие системы, но и сократить аппаратурные затраты.

СПИСОК ЛИТЕРАТУРЫ:

  1. Калмыков И.А. Математические модели нейросетевых отказоустойчивых вычислительных средств, функционирующих в полиномиальной системе классов вычетов /Под ред. Н.И. Червякова. - М.: ФИЗМАТЛИТ, 2005. - 276 с.
  2. Калмыков И.А., Червяков Н.И., Щелкунова Ю.О., Бережной В.В. Математическая модель нейронных сетей для исследования ортогональных преобразований в расширенных полях Галуа /Нейрокомпьютеры: разработка, применение. №6, 2003. с.61-68с.
  3. Элементы применения компьютерной математики и нейроинформатики /Н.И. Червяков, И.А. Калмыков И.А., В.А. Галкина, Ю.О. Щелкунова, А.А. Шилов; Под ред. Н.И. Червякова. - М.: ФИЗМАТЛИТ, 2003. - 216 с.


ЗАНЯТИЯ ФЛОРИСТИКОЙ – ЭФФЕКТИВНЫЙ ПУТЬ ФОРМИРОВАНИЯ ТВОРЧЕСКОЙ ЛИЧНОСТИ И ЭКОЛОГИЧЕСКОГО ОБРАЗОВАНИЯ

ЗАНЯТИЯ ФЛОРИСТИКОЙ – ЭФФЕКТИВНЫЙ ПУТЬ ФОРМИРОВАНИЯ ТВОРЧЕСКОЙ ЛИЧНОСТИ И ЭКОЛОГИЧЕСКОГО ОБРАЗОВАНИЯ В современных условиях жизни требуются люди, знакомые с экологическими проблемами. В этой работе рассматриваются несколько нетрадиционные, но очень эффективные способы соединения экообразования детей и развития творческой индивидуальности посредством уроков флористики. Творчество флористов базируется на использовании самых необычных комбинаций искусно высушенных цветков и некоторых других частей растений, сохраняющих исходную форму и цвет. Изучая принципы флористики, ребёнок узнаёт как об экологических проблемах, так и о флоре и фауне, и учится ценить красоту и гармонию мира как источник личных черт и творческих способностей. ...

12 11 2025 1:29:18

БИОХИМИЧЕСКИЙ СТАТУС СВИНЕЙ КРУПНОЙ БЕЛОЙ ПОРОДЫ ЗАПАДНОЙ СИБИРИ

БИОХИМИЧЕСКИЙ СТАТУС СВИНЕЙ КРУПНОЙ БЕЛОЙ ПОРОДЫ ЗАПАДНОЙ СИБИРИ Изучен биохимический статус свиней крупной белой породы Западной Сибири. Установлено влияние возраста на активность аминотрaнcфераз, которая уменьшается в процессе онтогенеза. Полученные данные могут являться основой для постоянного мониторинга селекционируемых популяций. ...

10 11 2025 5:18:31

Относительная изменчивость глубины сезонного оттаивания в антропогенных сукцессиях Центральной Якутии

Относительная изменчивость глубины сезонного оттаивания в антропогенных сукцессиях Центральной Якутии В статье рассматриваются две разновидности оттепели изменение глубины путем восстановления этапов нарушенных ландшафтов вечной мерзлоты, которые функционируют на суглинистых и песчаных отложениях высоких террас на правом и левом берегах реки Лены. Качественные изменения в динамике глубины сезонного оттаивания был обнаружен в определенные промежутки времени сукцессии этапов: трава, кустарники, березы, лиственницы (сосна) – березы и лиственницы (сосна). ...

09 11 2025 16:13:22

ЭКОНОМИЧЕСКИЕ ВОПРОСЫ РЕМОНТА БЫТОВОЙ ТЕХНИКИ

ЭКОНОМИЧЕСКИЕ ВОПРОСЫ РЕМОНТА БЫТОВОЙ ТЕХНИКИ В статье показано, что ремонт бытовой техники в зависимости от сложности и условий эксплуатации подразделяется на ремонт непосредственно на дому у заказчика, ремонт в мастерской. Ремонт на дому у заказчика связан с выполнением мелкого и среднего ремонта, т.е. когда ремонт технически возможен и экономически целесообразен. Ремонт в мастерской выполняется тогда, когда невозможно его выполнить в домашних условиях. Кроме того , ремонт бывает в гарантийный период и в послегарантийный периоды эксплуатации. Во всех случаях оплата за ремонт осуществляется по своим правилам, ...

08 11 2025 2:44:10

ПРИОРИТЕТ ЕСТЕСТВЕННОНАУЧНОЙ СОСТАВЛЯЮЩЕЙ ОБРАЗОВАНИЯ

ПРИОРИТЕТ ЕСТЕСТВЕННОНАУЧНОЙ СОСТАВЛЯЮЩЕЙ ОБРАЗОВАНИЯ Показано значение естественнонаучной составляющей образования для развития способов умственной деятельности у одаренных детей и значение основополагающих знаний естественных наук для будущих поколений. ...

31 10 2025 15:55:59

УРОВНИ PB И CD В ВОЛОСЕ ЖИВОТНОГО РОДА BOS

УРОВНИ PB И CD В ВОЛОСЕ ЖИВОТНОГО РОДА BOS Статья в формате PDF 91 KB...

30 10 2025 16:34:15

ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ХРОМОВОГО ДУБЛЕНИЯ

Статья в формате PDF 132 KB...

27 10 2025 14:47:21

ФУНКЦИИ АПОПТОЗА В РАЗВИТИИ И ЛЕЧЕНИИ БОЛЕЗНЕЙ

ФУНКЦИИ АПОПТОЗА В РАЗВИТИИ И ЛЕЧЕНИИ БОЛЕЗНЕЙ Статья в формате PDF 96 KB...

25 10 2025 23:28:52

Право и долг в самосознании русского народа

Право и долг в самосознании русского народа Статья в формате PDF 113 KB...

22 10 2025 7:21:24

СПЕЦИФИКА АФРОАМЕРИКАНСКОГО ЭТНИЧЕСКОГО ДИАЛЕКТА

СПЕЦИФИКА АФРОАМЕРИКАНСКОГО ЭТНИЧЕСКОГО ДИАЛЕКТА Статья в формате PDF 312 KB...

21 10 2025 0:15:56

СТУК ИЗ ПРОШЛОГО

СТУК ИЗ ПРОШЛОГО Статья в формате PDF 257 KB...

17 10 2025 13:25:32

ГЕОМЕТРИЯ ЧЕТЫРЕХМЕРНОГО МИРА

ГЕОМЕТРИЯ ЧЕТЫРЕХМЕРНОГО МИРА Представлен четырехмерный мир без фактора времени с предопределенностью событий и явлений в вечности. ...

16 10 2025 18:25:19

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::