ПРИМЕНЕНИЕ ПОЛИНОМИАЛЬНОЙ СИСТЕМЫ КЛАССОВ ВЫЧЕТОВ ДЛЯ ПОВЫШЕНИЯ СКОРОСТИ ФУНКЦИОНИРОВАНИЯ СПЕЦПРОЦЕССОРА АДАПТИВНЫХ СРЕДСТВ ЗАЩИТЫ ИНФОРМАЦИИ
Проблема исследований: В ближайшем будущем роль компьютерных систем будет всемерно усиливаться. При этом возникают новые задачи по разработке и созданию адаптивных средств защиты информации (АСЗИ) в вычислительных сетях от несанкционированного доступа (НСД).
Решение проблемы:
В последние годы наблюдается тенденция все более всестороннего применения алгебраических систем, определяемых в расширенных полях Галуа, при построении адаптивных средств защиты информации. Это обуславливает возможность использования следующих криптографических преобразований:
- сложение элементов по модулю порождающего полинома g(z);
- умножение элементов поля по модулю порождающего полинома g(z);
- возведение элементов в степень по модулю g(z).
Применение полиномиальной системы классов вычетов (ПСКВ) позволяет повысить эффективность данных систем с точки зрения обеспечения высокой скорости работы криптографического устройства.
Если в качестве оснований алгебраической системы выбрать минимальные многочлeны поля , то полином A(z), удовлетворяющий условию где , представляется в виде вектора
, (1)
где , .
Для двух полиномов, принадлежащих полному диапазону A(z) = и B(z) = , справедливо [1,2]:
, (2)
, (3)
(4)
где - линейная свертка; , .
Следовательно, ПСКВ может быть использована при реализации криптографических преобразований.
Пусть для выработки М-последовательности задан порождающий полином , а для реализации криптографических преобразований в поле GF(27) - порождающий полином . Тогда для одновременного обеспечения информационной скрытности и высокой скорости работы спецпроцессора АСЗИ будут использоваться 7-разрядные элементы поля GF(27). В этом случае сформированная последовательность символов в виде двоичных векторов длиной 7 бит является псевдослучайной последовательностью (ПСП) элементов конечного поля GF(27). Так как сформированная последовательность является последовательностью элементов мультипликативной группы расширенного поля Галуа GF(27), то к ним возможно применение криптографических преобразований.
Пусть криптографические преобразования определяются выражением
. (2)
В таблице представлено состояние первых 15 ячеек памяти генератора двоичной ПСП, задаваемой порождающим полиномом .
Таблица 1
№ |
Ячейки памяти генератора М-последовательности |
||||||||||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
|
1 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
2 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
Так как для реализации (2) необходимо две ПСП элементов поля GF(27), то значение первой ПСП снимаем с первой по седьмую ячеек, согласно выражения
, (3)
а значение второй ПСП с восьмой по четырнадцатую ячеек генератора М-последовательности
. (4)
Тогда имеем следующие элементы поля GF(27) на первых двух тактах работы генератора:
1 такт g11(z)=0110001=z5+z4+1 ; g21(z)=1100110=z6+z5+z2+z ;
2 такт g12(z)=1100011=z6+z5+z+1; g22(z)=1001100=z6+z3+z2;
Пусть в качестве открытого текста используется 7-битовая последовательность
s(z)=0000011=z+1.
Проведем преобразования согласно (2). Получаем
В качестве ПСКВ выберем алгебраическую систему, определяемую основаниями: ; , . Тогда рабочий диапазон составляет . Представим исходные последовательности в коде ПСКВ и проведем соответствующие преобразования:
Операнды |
|
α1(z) |
α2(z) |
α3(z) |
α4(z) |
α5(z) |
s(z)=z+1 |
х |
0 |
z+1 |
z+1 |
z+1 |
z+1 |
g11(z)=z5+z4+1 |
1 |
0 |
z3+z2+z+1 |
z+1 |
z2 |
|
|
+ |
0 |
0 |
z3+z2+z |
z2+1 |
z3+z2 |
g21(z)=z6+z5+z2+z |
0 |
z+1 |
z2+1 |
z |
z3+z2 |
|
|
|
0 |
z+1 |
z3+z+1 |
z2+z+1 |
0 |
Таким образом, имеем
Следовательно, применение ПСКВ позволяет обеспечить следующие преимущества [1,3]:
- операции выполняются над остатками независимо по каждому из модулей pi(z), что позволяет повысить быстродействие вычислительной системы;
- операции проводятся над малоразрядными операндами, что позволяет не только повысить быстродействие системы, но и сократить аппаратурные затраты.
СПИСОК ЛИТЕРАТУРЫ:
- Калмыков И.А. Математические модели нейросетевых отказоустойчивых вычислительных средств, функционирующих в полиномиальной системе классов вычетов /Под ред. Н.И. Червякова. - М.: ФИЗМАТЛИТ, 2005. - 276 с.
- Калмыков И.А., Червяков Н.И., Щелкунова Ю.О., Бережной В.В. Математическая модель нейронных сетей для исследования ортогональных преобразований в расширенных полях Галуа /Нейрокомпьютеры: разработка, применение. №6, 2003. с.61-68с.
- Элементы применения компьютерной математики и нейроинформатики /Н.И. Червяков, И.А. Калмыков И.А., В.А. Галкина, Ю.О. Щелкунова, А.А. Шилов; Под ред. Н.И. Червякова. - М.: ФИЗМАТЛИТ, 2003. - 216 с.
Статья в формате PDF 106 KB...
06 10 2024 6:32:32
Статья в формате PDF 353 KB...
05 10 2024 21:55:21
Статья в формате PDF 104 KB...
04 10 2024 16:13:57
Статья в формате PDF 111 KB...
03 10 2024 1:57:48
Статья в формате PDF 143 KB...
02 10 2024 19:54:44
Статья в формате PDF 141 KB...
01 10 2024 13:39:35
Разработана методика определения констант диссоциации протонированных трехкислотных оснований, отличающаяся новым подходом к оценке и учету концентраций всех равновесных частиц, для расчета ионной силы раствора. ...
27 09 2024 13:44:19
Статья в формате PDF 187 KB...
25 09 2024 10:27:30
Статья в формате PDF 265 KB...
23 09 2024 18:10:58
Статья в формате PDF 137 KB...
22 09 2024 14:21:15
Статья в формате PDF 119 KB...
21 09 2024 6:16:47
Статья в формате PDF 204 KB...
20 09 2024 2:38:27
18 09 2024 17:52:34
Статья в формате PDF 119 KB...
17 09 2024 3:23:57
Рассмотрено понятие параллельного мира. Выявлены опытные основания его существования. Предсказано пpaктическое использование иных измерений в решении физико-технических проблем, в медицине, трaнcпорте, левитации и проскопии. ...
15 09 2024 16:24:18
Статья в формате PDF 121 KB...
14 09 2024 14:22:17
Статья в формате PDF 104 KB...
13 09 2024 19:52:10
Статья в формате PDF 103 KB...
12 09 2024 5:19:42
Статья в формате PDF 123 KB...
11 09 2024 23:17:50
Статья в формате PDF 119 KB...
10 09 2024 17:13:35
Статья в формате PDF 119 KB...
09 09 2024 14:18:24
Статья в формате PDF 132 KB...
08 09 2024 16:31:42
07 09 2024 16:16:37
Статья в формате PDF 100 KB...
06 09 2024 20:39:44
Статья в формате PDF 104 KB...
05 09 2024 19:41:59
Статья в формате PDF 100 KB...
04 09 2024 1:38:10
Статья в формате PDF 118 KB...
03 09 2024 16:16:45
Статья в формате PDF 120 KB...
02 09 2024 8:47:35
Статья в формате PDF 182 KB...
01 09 2024 10:36:26
Статья в формате PDF 282 KB...
31 08 2024 10:26:11
Статья в формате PDF 253 KB...
30 08 2024 16:24:56
Статья в формате PDF 208 KB...
29 08 2024 7:49:48
Статья в формате PDF 184 KB...
28 08 2024 18:13:26
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::