ПРИМЕНЕНИЕ ПОЛИНОМИАЛЬНОЙ СИСТЕМЫ КЛАССОВ ВЫЧЕТОВ ДЛЯ ПОВЫШЕНИЯ СКОРОСТИ ФУНКЦИОНИРОВАНИЯ СПЕЦПРОЦЕССОРА АДАПТИВНЫХ СРЕДСТВ ЗАЩИТЫ ИНФОРМАЦИИ > Полезные советы
Тысяча полезных мелочей    

ПРИМЕНЕНИЕ ПОЛИНОМИАЛЬНОЙ СИСТЕМЫ КЛАССОВ ВЫЧЕТОВ ДЛЯ ПОВЫШЕНИЯ СКОРОСТИ ФУНКЦИОНИРОВАНИЯ СПЕЦПРОЦЕССОРА АДАПТИВНЫХ СРЕДСТВ ЗАЩИТЫ ИНФОРМАЦИИ

ПРИМЕНЕНИЕ ПОЛИНОМИАЛЬНОЙ СИСТЕМЫ КЛАССОВ ВЫЧЕТОВ ДЛЯ ПОВЫШЕНИЯ СКОРОСТИ ФУНКЦИОНИРОВАНИЯ СПЕЦПРОЦЕССОРА АДАПТИВНЫХ СРЕДСТВ ЗАЩИТЫ ИНФОРМАЦИИ

Калмыков И.А. Хайватов А.Б. Тимошенко Л.И. Гахов В.Р. Статья в формате PDF 127 KB

Проблема исследований: В ближайшем будущем роль компьютерных систем будет всемерно усиливаться. При этом возникают новые задачи по разработке и созданию адаптивных средств защиты информации (АСЗИ) в вычислительных сетях от несанкционированного доступа (НСД).

Решение проблемы:

В последние годы наблюдается тенденция все более всестороннего применения алгебраических систем, определяемых в расширенных полях Галуа, при построении адаптивных средств защиты информации. Это обуславливает возможность использования следующих криптографических преобразований:

- сложение элементов по модулю порождающего полинома g(z);

- умножение элементов поля по модулю порождающего полинома g(z);

- возведение элементов в степень по модулю g(z).

Применение полиномиальной системы классов вычетов (ПСКВ) позволяет повысить эффективность данных систем с точки зрения обеспечения высокой скорости  работы криптографического устройства.

Если в качестве оснований алгебраической системы выбрать минимальные многочлeны  поля , то полином A(z), удовлетворяющий условию  где  , представляется в виде вектора

,    (1)

где , .

Для двух полиномов, принадлежащих полному диапазону A(z) =   и B(z) = , справедливо [1,2]:

,        (2)

,                 (3)

                   (4)


где   - линейная свертка; , .

Следовательно, ПСКВ может быть использована при реализации криптографических преобразований.

Пусть для выработки М-последовательности задан порождающий полином , а для реализации криптографических преобразований в поле GF(27) - порождающий полином . Тогда для одновременного обеспечения информационной скрытности и высокой скорости работы спецпроцессора АСЗИ будут использоваться 7-разрядные элементы поля GF(27). В этом случае сформированная последовательность символов в виде двоичных векторов длиной 7 бит является псевдослучайной последовательностью (ПСП) элементов конечного поля GF(27). Так как сформированная последовательность является последовательностью элементов мультипликативной группы расширенного поля Галуа GF(27), то к ним возможно применение криптографических преобразований.

Пусть криптографические преобразования определяются выражением

.  (2)

В таблице представлено состояние первых 15 ячеек памяти генератора двоичной ПСП, задаваемой порождающим полиномом .

Таблица 1

Ячейки памяти генератора М-последовательности

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

1

0

0

0

1

1

0

0

1

1

0

0

1

1

0

2

1

1

0

0

0

1

1

0

0

1

1

0

0

1

1

Так как для реализации (2) необходимо две ПСП элементов поля GF(27), то значение первой ПСП снимаем с первой по седьмую ячеек, согласно выражения

,                  (3)

а значение второй ПСП с восьмой по четырнадцатую ячеек генератора М-последовательности

.           (4)

Тогда имеем следующие элементы поля GF(27) на первых двух тактах работы генератора:

1 такт          g11(z)=0110001=z5+z4+1 ;                 g21(z)=1100110=z6+z5+z2+z ;           

2 такт          g12(z)=1100011=z6+z5+z+1;              g22(z)=1001100=z6+z3+z2;

Пусть в качестве открытого текста используется 7-битовая последовательность

s(z)=0000011=z+1.

Проведем преобразования согласно (2). Получаем

В качестве ПСКВ выберем алгебраическую систему, определяемую основаниями: ; , . Тогда рабочий диапазон составляет . Представим исходные последовательности в коде ПСКВ и проведем соответствующие преобразования:


Операнды

 

α1(z)

α2(z)

α3(z)

α4(z)

α5(z)

s(z)=z+1

 

х

0

z+1

z+1

z+1

z+1

g11(z)=z5+z4+1

1

0

z3+z2+z+1

z+1

z2

 

+

0

0

z3+z2+z

z2+1

z3+z2

g21(z)=z6+z5+z2+z

0

z+1

z2+1

z

z3+z2

 

0

z+1

z3+z+1

z2+z+1

0

Таким образом, имеем 

Следовательно, применение ПСКВ позволяет обеспечить следующие преимущества [1,3]:

- операции выполняются над остатками независимо по каждому из модулей pi(z), что позволяет повысить быстродействие вычислительной системы;

- операции проводятся над малоразрядными операндами, что позволяет не только повысить быстродействие системы, но и сократить аппаратурные затраты.

СПИСОК ЛИТЕРАТУРЫ:

  1. Калмыков И.А. Математические модели нейросетевых отказоустойчивых вычислительных средств, функционирующих в полиномиальной системе классов вычетов /Под ред. Н.И. Червякова. - М.: ФИЗМАТЛИТ, 2005. - 276 с.
  2. Калмыков И.А., Червяков Н.И., Щелкунова Ю.О., Бережной В.В. Математическая модель нейронных сетей для исследования ортогональных преобразований в расширенных полях Галуа /Нейрокомпьютеры: разработка, применение. №6, 2003. с.61-68с.
  3. Элементы применения компьютерной математики и нейроинформатики /Н.И. Червяков, И.А. Калмыков И.А., В.А. Галкина, Ю.О. Щелкунова, А.А. Шилов; Под ред. Н.И. Червякова. - М.: ФИЗМАТЛИТ, 2003. - 216 с.


ЗАДАЧИ УПРАВЛЕНИЯ ПЕРСОНАЛОМ БАНКА В РФ

ЗАДАЧИ УПРАВЛЕНИЯ ПЕРСОНАЛОМ БАНКА В РФ Статья в формате PDF 125 KB...

24 03 2025 19:56:16

КОЛЛЕДЖ-БАЗА ПЕДАГОГИЧЕСКИХ ИССЛЕДОВАНИЙ

КОЛЛЕДЖ-БАЗА ПЕДАГОГИЧЕСКИХ ИССЛЕДОВАНИЙ Статья в формате PDF 154 KB...

17 03 2025 21:32:49

О ПЕРСПЕКТИВНЫХ ПЛОЩАДЯХ ПОИСКОВ КОЛЧЕДАННЫХ МЕСТОРОЖДЕНИЙ НА ГЛУБИНЕ НА ЮГЕ УРАЛА

О ПЕРСПЕКТИВНЫХ ПЛОЩАДЯХ ПОИСКОВ КОЛЧЕДАННЫХ МЕСТОРОЖДЕНИЙ НА ГЛУБИНЕ НА ЮГЕ УРАЛА Рассмотрены перспективные площади поисков залежей колчеданов в Орской и Бакайской синклиналях и в Западном Примугоджарье по гидрогеологическим показателям. Купоросные воды - реликтовые спутники сульфидных залежей, видимо широко развиты среди вулканитов девонского рифта Урала. ...

15 03 2025 22:52:56

МОДУЛЬНЫЙ ПРИНЦИП ИЗУЧЕНИЯ МАТЕМАТИКИ

МОДУЛЬНЫЙ ПРИНЦИП ИЗУЧЕНИЯ МАТЕМАТИКИ Статья в формате PDF 106 KB...

11 03 2025 14:11:35

ТЕОРЕТИЧЕСКАЯ БИОЛОГИЯ И НАУЧНОЕ МИРОВОЗЗРЕНИЕ

ТЕОРЕТИЧЕСКАЯ БИОЛОГИЯ И НАУЧНОЕ МИРОВОЗЗРЕНИЕ Статья в формате PDF 116 KB...

08 03 2025 3:34:52

ТЕРАПЕВТИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ПРИ ЛЕЧЕНИИ КОРОВ И ТЕЛОК С ИСПОЛЬЗОВАНИЕМ МЕТОДА КРИОТЕРАПИИ И ОЗОНОИРОВАННЫМИ ГОМЕОПАТИЧЕСКИМИ ПРЕПАРАТАМИ

ТЕРАПЕВТИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ПРИ ЛЕЧЕНИИ КОРОВ И ТЕЛОК С ИСПОЛЬЗОВАНИЕМ МЕТОДА КРИОТЕРАПИИ И ОЗОНОИРОВАННЫМИ ГОМЕОПАТИЧЕСКИМИ ПРЕПАРАТАМИ Бесплодие является одним из главным заболеванием коров. По причине непригодности к воспроизводству из стад выбывает более половины животных. По этой причине сельскохозяйственные предприятия терпят существенные убытки. В настоящее время в производстве требуются современные методы лечения, которые отличались бы высокой эффективностью, широким спектром действия, низкозатратностью. Авторы считают, что такой инновационной технологией является лечение нарушения воспроизводительной системы коров и телок с использованием метода криотерапии и озонированными гомеопатическими препаратами. ...

05 03 2025 2:37:39

РОЛЬ АУДИТОРИИ В УЧЕБНОМ ПРОЦЕССЕ

РОЛЬ АУДИТОРИИ В УЧЕБНОМ ПРОЦЕССЕ Статья в формате PDF 108 KB...

21 02 2025 17:59:17

РОЛЬ ЗАНЯТИЙ БАСКЕТБОЛОМ В ФОРМИРОВАНИИ ЛИЧНОСТИ

РОЛЬ ЗАНЯТИЙ БАСКЕТБОЛОМ В ФОРМИРОВАНИИ ЛИЧНОСТИ Статья в формате PDF 326 KB...

16 02 2025 18:32:21

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::