УДЕРЖАНИЕ ПЛАЗМЫ МАГНИТНЫМ ПОЛЕМ В ТЕХНИЧЕСКИХ ПРИЛОЖЕНИЯХ
Удержание плазмы магнитным полем (МП) является ключевым вопросом проблемы управляемых термоядерных реакций, неистощимого источника энергии. Однако и в других технических приложениях (лазеры, источники света, плазменные источники для покрытия и обработки поверхностей) удержание и отрыв плазмы от стенок позволяет существенно повысить параметры плазмы и технические хаpaктеристики устройств. При этом отсутствие необходимости полной изоляции плазмы от стенок в этих приложениях и существенно более низкие параметры плазмы снимают проблему появления большей части плазменных неустойчивостей и снижают требования к параметрам удержания. Часто достаточно лишь достичь значительного уменьшения концентрации вблизи стенки. В настоящей работе рассматривается возможность удержания плазмы модулированным продольным МП при наличии осевого разрядного тока в плазме [1].
Пусть продольное МП модулировано отрезками прямых (рис.1). Разрядный электронный ток направлен вдоль оси Z с электронной скоростью Vz . Рассмотрим равновесие плазмы в поперечном направлении r , считая изменение радиуса плазмы малым на периоде модуляции. Для удержания плазмы в среднем за период модуляции должно выполнятся соотношение:
, (1)
где vφ - азимутальная холловская скорость электронов, уравнением для которой будет:
, (2)
где νe - частота электронных столкновений, - радиальная составляющая МП.
При постоянном Br уравнение (2) есть линейное уравнение для vφ и оно имеет решение:
(3)
Отсюда видно, что vφ пропорционально , тогда можно положить:
, (4)
где коэффициент А зависит от отношения и параметров модуляции МП. Решением уравнения (4), при слабом изменении температуры электронов, будет:
, (5)
где n0 - концентрация на оси.
Формула (5) даёт резкий спад концентрации по радиусу и, предполагая её значение на границе , можно определить необходимое для удержания значение АDВ2 :
. (6)
Рассмотрим конкретное значение коэффициента А.
При отсутствии столкновений, согласно (2), vφ определяется локальным значением магнитного поля (известная теорема Буша):
.
Тогда
и .
Согласно (6) будем иметь: ; .
Таким образом, необходимая скорость превышает тепловую скорость, что приводит к бунемановской неустойчивости и турбулентности плазмы. При этом скорость vj ограничивается тепловой и удержание плазмы не достигается. Отметим, что постоянная составляющая магнитного поля В0 не влияет на эффект удержания.
При большой частоте столкновений ; .
на участках нарастания и спада магнитного поля равен и противоположен по знаку, так что его среднее значение на периоде равно нулю и А → 0.
Однако, при L2 << L1 возможен вариант, когда ограничение vφ тепловой скоростью будет только на участке расширения L2 и тогда эффект сжатия на участке L1 будет превышать эффект расширения на участке L2 с суммарным сжимающим эффектом. Постоянная составляющая магнитного поля B0 в этом случае может увеличить этот эффект сжатия. Действительно:
;
. (7)
И условие vφ max < vT на первом участке равносильно условию:
4 r eл < r гр (8)
где vT тепловая скорость электронов; - ларморовский радиус электрона в постоянной составляющей магнитного поля.
Таким образом, для удержания плазмы необходимо выполнение условий:
L1 >> L2 ; ; а также выполнение условий (7) и (8).
Экспериментальные исследования сжатия канала продольного разряда проводились нами для двух случаев распределения напряжённости магнитного поля вдоль оси трубки - модулированного магнитного поля с постоянной составляющей (рис.1) и знакопеременного магнитного поля (рис.2). Требуемая конфигурация и величина магнитного поля достигалась при протекании импульсного тока в плоских электромагнитных катушках, составляющих магнитную систему. Для обеспечения большей протяжённости участка нарастания магнитного поля по сравнению с участком уменьшения использовались ферромагнитные диски. Разряд зажигался в стеклянной трубке с внутренним диаметром 12мм в аргоне при давлении 0,05 ÷ 0.2 Торр.
Рисунок 1. Распределение индукции магнитного поля, модулированного отрезками прямых, вдоль оси продольного разряда
Рисунок 2. Распределение знакопеременного магнитного поля вдоль оси продольного разряда
Ток разряда имел прямоугольную форму, а магнитное поле пpaктически постоянно во время горения разряда. Величина тока разряда варьировалась от 0,5А до 130А, а длительность импульсов от 0,2мс до 1мс. Максимальное значение индукции магнитного поля составляло 700Гс. Для регистрации эффекта сжатия канала разряда производилось фотографирование свечения канала разряда в промежутках меду катушками магнитной системы.
Полученные экспериментальные результаты можно свести к следующему:
- Особенно эффективно сжатие канала разряда в случае знакопеременного магнитного поля.
- Эффективность сжатия повышалась при уменьшении давления газа и с увеличением крутизны нарастания магнитного поля, которая определялась величиной тока в катушках и расстоянием между катушками.
- В плоскости прохождения Bz через нуль (реверс магнитного поля) наблюдалась яркая область свечения плазмы, достигающая стенок трубки. Воздействие плазмы в местах реверса магнитного поля на стенки усиливалось по направлению от катода к аноду.
- В режимах с эффективным сжатием в знакопеременном поле наблюдался существенный рост падения напряжения на разрядном канале, находящемся в магнитном поле.
- Сжатие канала разряда при тех же значениях тока в магнитных катушках проявлялось намного слабее в случае модулированного магнитного поля по сравнению с знакопеременным полем, однако, из-за локального выброса плазмы на стенку и наличия постоянной составляющей Bz , именно случай модулированного магнитного поля с постоянной составляющей представляется более перспективным.
Исследования, описанные в данной работе, были проведены в рамках проекта PZ-013-02, поддерживаемого совместно Американским фондом гражданских исследований и развития (АФГИР), Министерством образования РФ и правительством Республики Карелия.
Литература:
- Сысун В.И., Хромой Ю.Д., Яковлев Д.В. и др. Авторское свидетельство СССР, №280772, 01.03.88. Дополнительное авторское свидетельство №324404, 10.03.91.
В работе показано, что фундаментальные принципы классической механики и теории поля - принцип наименьшего действия и калибровочная инвариантность полей и электромагнитного поля - есть прямое следствие существования уже в рамках классической физики функции состояния.
...
07 02 2025 6:19:10
Статья в формате PDF
245 KB...
06 02 2025 2:40:10
Статья в формате PDF
114 KB...
05 02 2025 23:33:50
Статья в формате PDF
105 KB...
04 02 2025 20:23:22
Статья в формате PDF
118 KB...
03 02 2025 10:19:40
Статья в формате PDF
126 KB...
02 02 2025 13:22:27
Статья в формате PDF
137 KB...
31 01 2025 3:19:25
30 01 2025 9:27:34
Статья в формате PDF
115 KB...
29 01 2025 1:35:26
Статья в формате PDF
103 KB...
28 01 2025 9:14:40
Статья в формате PDF
266 KB...
27 01 2025 22:11:22
Статья в формате PDF
129 KB...
26 01 2025 23:45:49
Статья в формате PDF
131 KB...
25 01 2025 20:52:35
Статья в формате PDF
101 KB...
24 01 2025 5:15:15
Проведен анализ изменений состава тела вследствие курса экстремальных воздушных криогенных тренировок (ОВКТ) в камере закрытого типа при t = –110 ± 5 °С. Исследован состав тела 35 человек (87 % выборки), до и после курса ОВКТ, состоявшего из 10 сеансов в режиме 1 процеДypa в день. Анализ состава тела проводили на биоимпедансном анализаторе АВС-02 «Медасс». Статистическая обработка проведена с расчетом медианы (Ме), значений исследуемых параметров в первой (Q25 %) и последней (Q75 %) квартилях распределения, сравнением полученных данных с использованием непараметрического критерия Манна Уитни Вилкоксона (U). Выявлено снижение значений Ме для жировой массы и ее возрастание для мышечной и активной клеточной массы, что отражает как правило формирование более высокого уровня здоровья и адаптированности исследуемых к факторам среды. Модуляция состава тела в результате курса ОВКТ зависит от исходного функционального состояния исследуемых, однако направленность изменений данных биометрии остается позитивной.
...
23 01 2025 12:33:10
Статья в формате PDF
104 KB...
22 01 2025 18:24:32
Статья в формате PDF
111 KB...
21 01 2025 5:53:53
Статья в формате PDF
393 KB...
20 01 2025 22:45:33
Статья в формате PDF
118 KB...
19 01 2025 16:54:46
Статья в формате PDF
263 KB...
18 01 2025 10:46:41
Статья в формате PDF
105 KB...
17 01 2025 3:53:27
Статья в формате PDF
104 KB...
16 01 2025 1:11:38
Статья в формате PDF
104 KB...
15 01 2025 16:14:25
Статья в формате PDF
113 KB...
13 01 2025 0:34:50
Статья в формате PDF
128 KB...
12 01 2025 7:16:19
Костная ткань обладает целым рядом уникальных физических свойств. Наиболее ценными с производственной точки зрения, представляются только некоторые из них: жесткость, твердость, упругость, эластичность. Наш научный интерес проявился на два основных свойства: жесткость и эластичность.
...
09 01 2025 14:29:12
Статья в формате PDF
664 KB...
08 01 2025 21:14:17
Статья в формате PDF
235 KB...
06 01 2025 11:10:38
Статья в формате PDF
243 KB...
05 01 2025 1:49:17
Формирование эффективной системы работы с детьми, обладающими повышенными естественнонаучными способностями, может стать залогом успешного продвижения экономических и образовательных реформ в нашей стране.
...
04 01 2025 11:52:40
Возрастные изменения геометрических параметров эритроцитов крови здоровых мужчин проявляются в виде увеличение диаметра, площади поверхности и объема красных клеток крови. У женщин, по сравнению с мужчинами, установлены достоверно более высокие показатели площади поверхности и объема эритроцитов. С возрастом регистрируется повышение жесткости мембран эритроцитов, причем данные изменения более выражены у женщин.
...
01 01 2025 15:53:53
Статья в формате PDF
298 KB...
31 12 2024 18:42:12
Статья в формате PDF
120 KB...
30 12 2024 2:48:41
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::