УДЕРЖАНИЕ ПЛАЗМЫ МАГНИТНЫМ ПОЛЕМ В ТЕХНИЧЕСКИХ ПРИЛОЖЕНИЯХ > Полезные советы
Тысяча полезных мелочей    

УДЕРЖАНИЕ ПЛАЗМЫ МАГНИТНЫМ ПОЛЕМ В ТЕХНИЧЕСКИХ ПРИЛОЖЕНИЯХ

УДЕРЖАНИЕ ПЛАЗМЫ МАГНИТНЫМ ПОЛЕМ В ТЕХНИЧЕСКИХ ПРИЛОЖЕНИЯХ

Гура П.С. Сысун В.И. Статья в формате PDF 125 KB

Удержание плазмы магнитным полем (МП) является ключевым вопросом проблемы управляемых термоядерных реакций, неистощимого источника энергии. Однако и в других технических приложениях (лазеры, источники света, плазменные источники для покрытия и обработки поверхностей) удержание и отрыв плазмы от стенок позволяет существенно повысить параметры плазмы и технические хаpaктеристики устройств. При этом отсутствие необходимости полной изоляции плазмы от стенок в этих приложениях и существенно более низкие параметры плазмы снимают проблему появления большей части плазменных неустойчивостей и снижают требования к параметрам удержания. Часто достаточно лишь достичь значительного уменьшения концентрации вблизи стенки. В настоящей работе рассматривается возможность удержания плазмы модулированным продольным МП при наличии осевого разрядного тока в плазме [1].

Пусть продольное МП модулировано отрезками прямых (рис.1). Разрядный электронный ток направлен вдоль оси Z с электронной скоростью Vz . Рассмотрим равновесие плазмы в поперечном направлении r , считая изменение радиуса плазмы малым на периоде модуляции. Для удержания плазмы в среднем за период модуляции должно выполнятся соотношение:

,             (1)

где vφ  - азимутальная холловская скорость электронов, уравнением для которой будет:

,                  (2)

где νe - частота электронных столкновений, - радиальная составляющая МП.

При постоянном Br уравнение (2) есть линейное уравнение для vφ и оно имеет решение:

 (3)

Отсюда видно, что vφ  пропорционально , тогда можно положить:

,  (4)

где коэффициент А зависит от отношения  и параметров модуляции МП. Решением уравнения (4), при слабом изменении температуры электронов, будет:

,                    (5)

где n0 - концентрация на оси.

Формула (5) даёт резкий спад концентрации по радиусу и, предполагая её значение на границе , можно определить необходимое для удержания значение  АDВ2 :

.                  (6)

Рассмотрим конкретное значение коэффициента А.

При отсутствии столкновений, согласно (2), vφ  определяется локальным значением магнитного поля (известная теорема Буша):

.

Тогда

  и  . 

Согласно (6) будем иметь: ; .

Таким образом, необходимая скорость превышает тепловую скорость, что приводит к бунемановской неустойчивости и турбулентности плазмы. При этом скорость vj  ограничивается тепловой и удержание плазмы не достигается. Отметим, что постоянная составляющая магнитного поля В0 не влияет на эффект удержания.

При большой частоте столкновений ;          .

  на участках нарастания и спада магнитного поля равен  и противоположен по знаку, так что его среднее значение на периоде равно нулю и А → 0.

Однако, при L2 << L1 возможен вариант, когда ограничение vφ  тепловой скоростью будет только на участке расширения L2 и тогда эффект сжатия на участке L1 будет превышать эффект расширения на участке L2 с суммарным сжимающим эффектом. Постоянная составляющая магнитного поля B0 в этом случае может увеличить этот эффект сжатия. Действительно:

;

.       (7)

И условие vφ max <  vT    на первом участке равносильно условию:

4 r < r гр                                                                     (8)

где vT    тепловая скорость электронов; - ларморовский радиус электрона в постоянной составляющей магнитного поля.

Таким образом, для удержания плазмы необходимо выполнение условий:

L1 >> L2 ;  ;   а также выполнение условий (7) и (8).

Экспериментальные исследования сжатия канала продольного разряда проводились нами для двух случаев распределения напряжённости магнитного поля вдоль оси трубки - модулированного магнитного поля с постоянной составляющей (рис.1) и знакопеременного магнитного поля (рис.2). Требуемая конфигурация и величина магнитного поля достигалась при протекании импульсного тока в плоских электромагнитных катушках, составляющих магнитную систему. Для обеспечения большей протяжённости участка нарастания магнитного поля по сравнению с участком уменьшения использовались ферромагнитные диски. Разряд зажигался в стеклянной трубке с внутренним диаметром 12мм в аргоне при давлении 0,05 ÷ 0.2 Торр.

 

Рисунок 1. Распределение индукции магнитного поля, модулированного отрезками прямых, вдоль оси продольного разряда

Рисунок 2. Распределение знакопеременного магнитного поля вдоль оси продольного разряда

Ток разряда имел прямоугольную форму, а магнитное поле пpaктически постоянно во время горения разряда. Величина тока разряда варьировалась от 0,5А до 130А, а длительность импульсов от 0,2мс до 1мс. Максимальное значение индукции магнитного поля составляло 700Гс. Для регистрации эффекта сжатия канала разряда производилось фотографирование свечения канала разряда в промежутках меду катушками магнитной системы.

Полученные экспериментальные результаты можно свести к следующему:

- Особенно эффективно сжатие канала разряда в случае знакопеременного магнитного поля.

- Эффективность сжатия повышалась при уменьшении давления газа и с увеличением крутизны нарастания магнитного поля, которая определялась величиной тока в катушках и расстоянием между катушками.

- В плоскости прохождения Bz через нуль (реверс магнитного поля) наблюдалась яркая область свечения плазмы, достигающая стенок трубки. Воздействие плазмы в местах реверса магнитного поля на стенки усиливалось по направлению от катода к аноду.

- В режимах с эффективным сжатием в знакопеременном поле наблюдался существенный рост падения напряжения на разрядном канале, находящемся в магнитном поле.

- Сжатие канала разряда при тех же значениях тока в магнитных катушках проявлялось намного слабее в случае модулированного магнитного поля по сравнению с знакопеременным полем, однако, из-за локального выброса плазмы на стенку и наличия постоянной составляющей Bz , именно случай модулированного магнитного поля с постоянной составляющей представляется более перспективным.

Исследования, описанные в данной работе, были проведены в рамках проекта PZ-013-02, поддерживаемого совместно Американским фондом гражданских исследований и развития (АФГИР), Министерством образования РФ и правительством Республики Карелия.

Литература:

  1. Сысун В.И., Хромой Ю.Д., Яковлев Д.В. и др. Авторское свидетельство СССР, №280772, 01.03.88. Дополнительное авторское свидетельство №324404, 10.03.91.


УЧЕБНОЕ ПОСОБИЕ «ОБЩАЯ ГИДРОГЕОЛОГИЯ»

УЧЕБНОЕ ПОСОБИЕ «ОБЩАЯ ГИДРОГЕОЛОГИЯ» Статья в формате PDF 359 KB...

15 04 2024 23:11:12

ФАСИЛИТИ МЕНЕДЖМЕНТ

ФАСИЛИТИ МЕНЕДЖМЕНТ Статья в формате PDF 204 KB...

13 04 2024 21:53:20

ОКРУЖАЮЩАЯ СРЕДА И ГЕОГЕЛЬМИНТОЗЫ

ОКРУЖАЮЩАЯ СРЕДА И ГЕОГЕЛЬМИНТОЗЫ Статья в формате PDF 237 KB...

12 04 2024 9:27:21

ОЦЕНКА КОМПОНЕНТНОГО НЕРАВНОВЕСИЯ ДРЕВОСТОЯ ПО КРИВЫМ ВЫСОТ И ДИАМЕТРОВ РАСТУЩИХ ДЕРЕВЬЕВ

ОЦЕНКА КОМПОНЕНТНОГО НЕРАВНОВЕСИЯ ДРЕВОСТОЯ ПО КРИВЫМ ВЫСОТ И ДИАМЕТРОВ РАСТУЩИХ ДЕРЕВЬЕВ Приведена методика анализа древостоя по запатентованному способу измерения растущих деревьев на пробной площадке с лентами леса 20*10 м с дополнительным расчетом коэффициента компонентного экологического неравновесия древостоя по кривым высот и диаметров. Показаны особенности применения кривых диаметров с волновыми составляющими для оценки качества проведения рубок прореживания древостоя. ...

11 04 2024 7:12:32

ПРОБЛЕМЫ РЕГУЛИРОВАНИЯ ГАЗОВОЙ ОТРАСЛИ В РОССИИ

ПРОБЛЕМЫ РЕГУЛИРОВАНИЯ ГАЗОВОЙ ОТРАСЛИ В РОССИИ Статья в формате PDF 456 KB...

05 04 2024 10:18:34

Отходы производства и потрeбления. пути их решения

Отходы производства и потрeбления. пути их решения Статья в формате PDF 156 KB...

02 04 2024 10:27:23

Особенности регулирования банкротства Китая

Особенности регулирования банкротства Китая Статья в формате PDF 272 KB...

31 03 2024 5:54:59

АКТИВАЦИЯ ПРОЦЕССОВ ЛИПОПЕРОКСИДАЦИИ – ТИПОВОЙ ПРОЦЕСС ДЕЗИНТЕГРАЦИИ БИОСИСТЕМЫ ПРИ ОЖОГОВОЙ БОЛЕЗНИ

АКТИВАЦИЯ ПРОЦЕССОВ ЛИПОПЕРОКСИДАЦИИ – ТИПОВОЙ ПРОЦЕСС ДЕЗИНТЕГРАЦИИ БИОСИСТЕМЫ ПРИ ОЖОГОВОЙ БОЛЕЗНИ Комплексное клинико-лабораторное обследование 20-ти больных в динамике ожоговой болезни средней степени тяжести позволило выявить закономерность системных метаболических расстройств в виде активации процессов перекисного окисления липидов. Установлена взаимосвязь чрезмерного накопления в эритроцитах и плазме крови промежуточных продуктов липопероксидации с тяжестью клинических проявлений патологии. В период ожогового шока и токсемии имело место прогрессирующее повышение содержания малонового диальдегида и диеновых конъюгатов в крови, а положительная клиническая динамика ожоговой болезни у выздоравливающих больных (15 – 25 сутки наблюдения) коррелировала со снижением интенсивности процессов липопероксидации. Выявлена положительная корреляция между повышенным содержанием в крови продуктов липопероксидации, уровнем молекул средних масс и развитием синдрома цитолиза. ...

27 03 2024 12:32:12

HИКОЛAЕВ HИКОЛАЙ CПИPИДОНОВИЧ

HИКОЛAЕВ HИКОЛАЙ CПИPИДОНОВИЧ Статья в формате PDF 86 KB...

21 03 2024 9:40:59

О ДВИЖЕНИИ ЗЕМЛИ

Статья в формате PDF 129 KB...

19 03 2024 5:22:52

КОМПЛЕКСНОЕ ИССЛЕДОВАНИЕ ПРИРОДНОЙ СРЕДЫ ИРКУТСКОЙ ОБЛАСТИ

КОМПЛЕКСНОЕ ИССЛЕДОВАНИЕ ПРИРОДНОЙ СРЕДЫ ИРКУТСКОЙ ОБЛАСТИ В статье приведен комплексный анализ антропогенного воздействия на природную среду Иркутской области, приводящего к изменению не только количественных, но и качественных хаpaктеристик природной среды как системы. В частности, приведена общая экологическая ситуация, указывающая на значительное загрязнение и качественные изменения во всех компонентах окружающей среды: в почве, атмосферном воздухе, водных ресурсах. Комплексная химическая нагрузка влияет также на медико-демографические показатели здоровья населения. Необходим переход от технократического подхода к технологическому, что позволит избежать дальнейшей деградации природной системы. В качестве универсальной, независимой от экономической ситуации, единицы оценки экологического риска предложено использовать время. Основанная на современных представлениях о времени технология позволит установить границы антропогенного воздействия на природную систему, а так же рассчитать предполагаемый ущерб, наносимый природной системе каким-либо видом воздействия, выявить области с наложением различных типов воздействий, рассчитать совокупный ущерб в границах таких областей, и, следовательно, разработать комплекс превентивных мер для исключения качественных изменений природной среды. ...

18 03 2024 17:45:19

ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА СЕМЯН МАСЛИЧНОГО ЛЬНА

ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА СЕМЯН МАСЛИЧНОГО ЛЬНА Статья в формате PDF 138 KB...

16 03 2024 0:41:27

ПРОБЛЕМА МОРФИНИЗМА В СРЕДЕ МЕДИЦИНСКИХ РАБОТНИКОВ

ПРОБЛЕМА МОРФИНИЗМА В СРЕДЕ МЕДИЦИНСКИХ РАБОТНИКОВ Статья в формате PDF 245 KB...

14 03 2024 14:24:34

ИРКУТСКАЯ КРЕСТОВОЗДВИЖЕНСКАЯ ЦЕРКОВЬ

ИРКУТСКАЯ  КРЕСТОВОЗДВИЖЕНСКАЯ  ЦЕРКОВЬ Статья в формате PDF 1481 KB...

11 03 2024 15:58:21

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::