МАГНИТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ И ЕГО ПРИМЕНЕНИЕ В НАУКЕ И ТЕХНИКЕ > Полезные советы
Тысяча полезных мелочей    

МАГНИТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ И ЕГО ПРИМЕНЕНИЕ В НАУКЕ И ТЕХНИКЕ

МАГНИТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ И ЕГО ПРИМЕНЕНИЕ В НАУКЕ И ТЕХНИКЕ

Бичурин М.И. Петров В.М. Филиппов Д.А. Козин А.В. Srinivasan G. Nan C.W. Статья в формате PDF 108 KB

Магнитоэлектрический (МЭ) эффект заключается в индуцировании электрической поляризации в материале во внешнем магнитном поле или в появлении намагниченности во внешнем электрическом поле. Общим для монокристаллических материалов является то, что МЭ эффект наблюдается в большинстве из них при температурах, значительно ниже комнатной. Это связано с низкими температурами Нееля или Кюри для этих материалов. МЭ коэффициенты обращаются в нуль, как только температура приближается к точке перехода в неупорядоченное состояние. Кроме того, монокристаллические материалы хаpaктеризуются малыми значениями МЭ коэффициентов, величина которых недостаточна для пpaктического использования этих материалов. В значительной степени от указанных недостатков свободны композиционные материалы на основе ферритов и пьезоэлектриков. Для композиционных материалов открываются широкие возможности варьирования их физических свойств, а значит и оптимизации хаpaктеристик устройств на их основе [1-3].

Температурная зависимость МЭ эффекта в антиферромагнетиках может быть использована для определения температуры Нееля. Такая возможность обусловлена тем, что МЭ восприимчивость обращается в нуль при температурах выше температуры Нееля. Достоинством композиционных материалов является то, что МЭ эффект в них может быть использован для определения температуры Кюри для сегнетоэлектрической фазы. Кроме того, структура тензора МЭ восприимчивости может быть использована при уточнении симметрии кристаллических структур фаз слоистого композита. МЭ восприимчивость и МЭ коэффициент по напряжению определяются параметрами фаз композита и их объемными долями. Поэтому измеренные значения МЭ параметров могут быть использованы при определении таких параметров исходных компонент композита, как коэффициенты жесткости, податливости, пьезоэлектрические коэффициенты, диэлектрическая и магнитная проницаемости, пьезомагнитные модули. Параметры максвелл-вагнеровской релаксации и резонансной дисперсии МЭ параметров также могут быть использованы для уточнения таких параметров фаз, как электрическая проводимость, диэлектрическая проницаемость и т.п.

Известно, что магнитная восприимчивость феррита имеет резонансную зависимость от внешнего постоянного электрического поля. Наблюдение магнитного резонанса в феррите становится возможным в электрическом поле при использовании слоистого композиционного материала, в котором одной из компонент является исследуемый феррит. Указанный метод наблюдения ферромагнитного резонанса во внешнем постоянном электрическом поле основан на эффекте изменения частоты магнитного резонанса при воздействии на образец внешнего постоянного электрического поля. При этом система магнитной развертки может быть упрощена или исключена, а для перестройки частоты магнитного резонанса используется источник напряжения.

Одним из перспективных направлений использования композиционных феррит-пьезоэлектрических материалов является создание датчиков физических величин с широким частотным диапазоном. Керамическая технология изготовления композиционных материалов обуславливает их низкую стоимость по сравнению с монокристаллическими и поликристаллическими материалами и позволяет изготавливать датчики в микроэлектронном исполнении. В качестве примеров таких устройств можно указать датчики постоянного и переменного магнитного поля на основе многослойных и объемных композиционных МЭ материалов, пригодные для промышленного изготовления с применением микроэлектронной технологии.

Перспективной областью применения МЭ взаимодействия является создание СВЧ устройств на его основе. В частности, сдвиг линий магнитного резонанса под действием электрического поля, может быть использован для построения электрически управляемых модуляторов, переключателей, фильтров, датчиков мощности, фазовращателей и невзаимных устройств (вентилей, циркуляторов). Предложена конструкция однорезонаторного и двухрезонаторного МЭ фильтров с электрическим управлением, на основе слоистой феррит-пьезоэлектрической структуры состава монокристаллический ЖИГ - ЦТС.

СПИСОК ЛИТЕРАТУРЫ:

  1. Bichurin M.I., Petrov V.M., Srinivasan G. Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers // Phys. Rev. B, 2003, v. 68, p. 054402 (1-13).
  2. Bichurin M. I., Petrov V. M., Ryabkov O. V., Averkin S. V., and Srinivasan G. Theory of Magnetoelectric Effects at Magnetoacoustic Resonance in Ferromagnetic-Ferroelectric Heterostructures // G.. Phys. Rev. B, 2005, V. 72, P. 060408 (R).
  3. Бичурин М.И., Петров В.М., Филиппов Д.А., Srinivasan G., Nan C.W. Магнитоэлектрические материалы - М.: Академия Естествознания, 2006. - 296 с.


ИННОВАЦИОННЫЙ ПОТЕНЦИАЛ РОССИИ

ИННОВАЦИОННЫЙ ПОТЕНЦИАЛ РОССИИ Статья в формате PDF 256 KB...

05 07 2022 6:30:18

СХЕМА РАЗВИТИЯ УМЕНИЙ И НАВЫКОВ

СХЕМА РАЗВИТИЯ УМЕНИЙ И НАВЫКОВ Статья в формате PDF 148 KB...

25 06 2022 19:26:14

МОНИТОРИНГ СОСТОЯНИЯ ВОДЫ РЕК ЕНИСЕЯ И КАЧИ

МОНИТОРИНГ СОСТОЯНИЯ ВОДЫ РЕК ЕНИСЕЯ И КАЧИ Статья в формате PDF 206 KB...

15 06 2022 11:47:52

О СТРОЕНИИ И ТОПОГРАФИИ КРАНИАЛЬНЫХ БРЫЖЕЕЧНЫХ ЛИМФАТИЧЕСКИХ УЗЛОВ У НОВОРОЖДЕННЫХ БЕЛОЙ КРЫСЫ

Краниальные брыжеечные лимфатические узлы у новорожденных белой крысы располагаются главным образом вдоль ствола одноименной артерии и отличаются слабо дифференцированной паренхимой. ...

14 06 2022 15:44:33

БИОВОЛНОГЕНЕЗ: Ч.2. КАТАСТРОФИЗМ В ТЕХНО- И БИОСФЕРЕ

БИОВОЛНОГЕНЕЗ: Ч.2. КАТАСТРОФИЗМ В ТЕХНО- И БИОСФЕРЕ Статья в формате PDF 147 KB...

12 06 2022 3:57:35

ПЕРВОЕ НАЧАЛО ТЕРМОЛЕВИТАЦИИ

ПЕРВОЕ НАЧАЛО ТЕРМОЛЕВИТАЦИИ Статья в формате PDF 114 KB...

10 06 2022 0:28:36

МИРОВОЗЗРЕНИЕ И ЦЕННОСТИ

МИРОВОЗЗРЕНИЕ И ЦЕННОСТИ Статья в формате PDF 258 KB...

09 06 2022 6:54:55

ДЕНЕЖНОЕ ОБРАЩЕНИЕ: ИСТОРИЯ И ТЕОРИЯ (монография)

ДЕНЕЖНОЕ ОБРАЩЕНИЕ: ИСТОРИЯ И ТЕОРИЯ (монография) Статья в формате PDF 102 KB...

02 06 2022 13:29:39

ПЛАНЕТАРНЫЙ МЕХАНИЗМ С БЕЗВОДИЛЬНЫМ САТЕЛЛИТОМ

ПЛАНЕТАРНЫЙ МЕХАНИЗМ С БЕЗВОДИЛЬНЫМ САТЕЛЛИТОМ Статья в формате PDF 326 KB...

01 06 2022 19:28:11

МЕХАНИКА

МЕХАНИКА Статья в формате PDF 250 KB...

29 05 2022 17:45:29

ПРИМЕНЕНИЕ ГИС НА ЖЕЛЕЗНОДОРОЖНОМ ТРАНСПОРТЕ

ПРИМЕНЕНИЕ ГИС НА ЖЕЛЕЗНОДОРОЖНОМ ТРАНСПОРТЕ Статья в формате PDF 335 KB...

28 05 2022 1:22:54

БИЗНЕС-ПЛАН: СТРАТЕГИЯ И ТАКТИКА ПРЕДПРИЯТИЯ

БИЗНЕС-ПЛАН: СТРАТЕГИЯ И ТАКТИКА ПРЕДПРИЯТИЯ Статья в формате PDF 112 KB...

26 05 2022 15:47:45

СОДЕРЖАНИЕ СВИНЦА В СИСТЕМЕ МАТЬ-ПЛАЦЕНТА-ПЛОД

СОДЕРЖАНИЕ СВИНЦА В СИСТЕМЕ МАТЬ-ПЛАЦЕНТА-ПЛОД Статья в формате PDF 90 KB...

22 05 2022 13:48:56

К ВОПРОСУ О ПЕДАГОГИЧЕСКОЙ ПОДДЕРЖКЕ ОДАРЕННЫХ ДЕТЕЙ И СРЕДСТВАХ РАЗВИТИЯ ОДАРЕННОСТИ

К ВОПРОСУ О ПЕДАГОГИЧЕСКОЙ ПОДДЕРЖКЕ ОДАРЕННЫХ ДЕТЕЙ И СРЕДСТВАХ РАЗВИТИЯ ОДАРЕННОСТИ Основная задача при работе с одаренными детьми заключается в том, чтобы поддержать в ребенке стремление к освоению высших ценностей, создать условия, в которых ребенок сможет строить свою личность самостоятельно, накапливать индивидуальный познавательный опыт. Физика наряду с другими фундаментальными науками дает возможность развивать творческие способности учащихся, навыки системного мышления. ...

19 05 2022 18:32:41

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::