Об устойчивости стационарных режимов в реакторе с кипящим слоем катализатора > Полезные советы
Тысяча полезных мелочей    

Об устойчивости стационарных режимов в реакторе с кипящим слоем катализатора

Об устойчивости стационарных режимов в реакторе с кипящим слоем катализатора

Макарова И.Д. Статья в формате PDF 116 KB

Моделирование процессов в химических реакторах в ряде случаев приводит к краевым задачам для гиперболических уравнений [1-5]. В частности, процесс в реакторе с кипящим слоем катализатора при реакции первого порядка (скорость реакции линейно зависит от концентрации реагирующего вещества) моделируется [1] смешанной задачей для почти линейной гиперболической системы на плоскости

Здесь П - полуполоса (0,1) (0, ∞),θ, θr - температура в реакторе и холодильнике, Ñ - концентрация реагирующего вещества, α, β, γ, δ, θ0 - постоянные, из них первые четыре положительны, начальные функции – гладкие и удовлетворяют условиям согласования нулевого и первого порядков.

В данной работе установлено прямым методом Ляпунова достаточное условие экспоненциальной устойчивости в L2 - норме стационарного решения задачи (1) (вариант этого метода применительно к указанному классу краевых задач предложен в [5]), предварительно получено достаточное условие существования таких решений.

Теорема 1. Для существования хотя бы одного стационарного решения краевой задачи (1) достаточно выполнение неравенства

Пусть выполнено условие (2) и 12 ( z, v1,v2) - стационарное решение краевой задачи (1). Введем вектор отклонений

u = (C-z, θ - v1, θ - v2)

Будем говорить, что стационарное решение задачи (1) экспоненциально устойчиво в L2 - норме, если существует такое δ > 0 , что для решений (C, θ, θr) задачи (1) таких, что |u (x ,0)| < δ при x € при [0,1] , выполняется оценка

Теорема 2. Для экспоненциальной устойчивости в L2 - норме стационарного решения краевой задачи (1) достаточно выполнение неравенства

Отметим, что из (3) следует условие (2) существования стационарного решения.

В основе подхода к обоснованию лежит вариант прямого метода Ляпунова для гиперболических смешанных задач, предложенный в работе [5].

Литература

  1. Зеленяк Т.И. К вопросу об устойчивости решений смешанных задач для одного квазилинейного уравнения //Дифференц. уравнения. 1967. Т.3. №1. С.19-29.
  2. Шеплев В.С., Мещеряков В.Д. Математическое моделирование реакторов с кипящим слоем катализатора //В кн.: Математическое моделирование химических реакторов. Новосибирск: Наука. Сиб. Отд. 1984. С.44-65.
  3. Иванов Е.А. Управление процессом в реакторе с псевдоожиженным слоем //Там же. С.116-127.
  4. Акрамов Т.А. Качественный и численный анализ модели реактора с противотоком компонентов //Математическое моделирование каталитических реакторов. Новосибирск: Наука. 1989. С.195-214.
  5. Романовский Р.К., Воробьева Е.В., Макаро- ва И.Д. Об устойчивости решений смешанной задачи для почти линейной гиперболической системы на плоскости // Сиб. журн. индустр. математики. - 2003.- Т.6 - № 1. – С. 118-124.


ПРОФЕССИОНАЛЬНЫЕ СТИЛИ ЧЕЛОВЕКА И ЭФФЕКТИВНОСТЬ ЕГО ДЕЯТЕЛЬНОСТИ

ПРОФЕССИОНАЛЬНЫЕ СТИЛИ ЧЕЛОВЕКА И ЭФФЕКТИВНОСТЬ ЕГО ДЕЯТЕЛЬНОСТИ В статье дается концептуальное видение профессиональных стилей человека в зависимости от его профессиональных и жизненных приоритетов. Стиль отражает стратегию адаптации человека. Индивидуальный стиль профессиональной деятельности рассматривается как функция составляющих ее эффективности. Выделено 16 вариантов стилей, в зависимости от значимых для человека составляющих эффективности его труда. В зависимости от профессиональной успешности, степени удовлетворенности трудом и ценностных ориентаций выделено 8 профессиональных стилей, хаpaктеризующих (выявляющих, демонстрирующих) хаpaктер специалиста. ...

04 07 2025 19:53:11

НПВС В КОМПЛЕКСНОЙ ТЕРАПИИ РОЖИ

Статья в формате PDF 121 KB...

01 07 2025 12:35:22

ЛИМФАТИЧЕСКАЯ СИСТЕМА: ОПРЕДЕЛЕНИЕ

ЛИМФАТИЧЕСКАЯ СИСТЕМА: ОПРЕДЕЛЕНИЕ Лимфатическая система на всех уровнях своей организации и этапах своего развития в эволюции и онтогенезе представляет собой специализированный дренажный отдел сердечно-сосудистой системы, коллатеральный к венам. ...

19 06 2025 20:28:11

НОВЫЙ ПОДХОД К ИССЛЕДОВАНИЮ ПРИРОДЫ ТЕРРОРИЗМА

НОВЫЙ ПОДХОД К ИССЛЕДОВАНИЮ ПРИРОДЫ ТЕРРОРИЗМА Статья в формате PDF 136 KB...

13 06 2025 23:50:48

БОЛОТА В МИРОВОСПРИЯТИИ ВОЛОГОДСКОГО КРЕСТЬЯНИНА

Статья в формате PDF 280 KB...

09 06 2025 16:23:50

ВЛИЯНИЕ ПРИРОДЫ АЛКИЛЬНЫХ ГРУПП У АММОНИЕВОГО АЗОТА НА РЕГИОХИМИЮ ЩЕЛОЧНОГО РАСЩЕПЛЕНИЯ 1,4-БИСАММОНИЕВЫХ СОЛЕЙ С 2,3-ДИБРОМБУТ-2-ЕНИЛЕНОВОЙ ОБЩЕЙ ГРУППОЙ

ВЛИЯНИЕ ПРИРОДЫ АЛКИЛЬНЫХ ГРУПП У АММОНИЕВОГО АЗОТА НА РЕГИОХИМИЮ ЩЕЛОЧНОГО РАСЩЕПЛЕНИЯ 1,4-БИСАММОНИЕВЫХ СОЛЕЙ С 2,3-ДИБРОМБУТ-2-ЕНИЛЕНОВОЙ ОБЩЕЙ ГРУППОЙ Исследовано водно- и спирто-щелочное расщепление 1,4-бис (диметилэтил-, диэтилметил и диметилфенацил)-2,3-дибромбут-2-ениленаммоний дигалоген-идов. Показано, что в отличие от их триметильного аналога, во всех случаях расщепление протекает в довольно жестких условиях (высокие температуры, избыток щелочи), с образованием сложной смеси продуктов. ...

05 06 2025 13:50:57

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::