ИССЛЕДОВАНИЯ ВЛИЯНИЯ НАПОРНЫХ ВОД НА РАЗВИТИЕ ОПОЛЗНЕВЫХ ДЕФОРМАЦИЙ В СКЛОНАХ НА ПРИМЕРЕ УЧАСТКА, ЗАНИМАЕМОГО СООРУЖЕНИЯМИ ЗАГОРСКОЙ ГАЭС
Загорская гидроаккумулирующая электростанция мощностью 1200 тыс. кВт, предназначенная для покрытия пиковых потребностей в электроэнергии г. Москвы и Московской области, проектировалась на реке Кунье на участке, расположенном в 20 км к северу от г. Загорска (г. Сергиев Посад).
В целом рельеф района представляет собой холмистую моренную равнину, расчлeнённую долинами рек, ручьёв и оврагов. Выбор района строительства ГАЭС во многом определялся хаpaктером рельефа и, в первую очередь, глубоким врезом долины реки Куньи по отношению к водораздельным прострaнcтвам.
Загорская ГАЭС представляет собой комплекс сооружений (рис. 1): 1 - верхний аккумулирующий бассейн - в районе сел Богородское - Шубино - Иудино; 2 - сооружения станционного узла (водоприёмник, трубопроводы и здание ГАЭС) на левом берегу р. Кунья против деревни Выпуклово; 3 - нижний бассейн (водохранилище) на р. Кунье с низовой плотиной у поселка Федоровское и отсечной верховой плотиной у города Краснозаводска; 4 - подсобные сооружения (базы, посёлки) и дороги.
Рис. 1. План-схема расположения сооружений Загорской ГАЭС
Режим эксплуатации ГАЭС, и в первую очередь суточный цикл изменения уровней, планировался следующим образом: с 16 до 20 часов выработка электроэнергии, при этом уровень в верхнем бассейне сpaбатывается с отметки 266,5 (НПУ) до отметки 257,5 (УМО), а в нижнем бассейне происходит подъём воды с отметки 152,0 (УМО) до 162,5 (НПУ). С 20 до 24 часов - стационарный режим при НПУ в нижнем и УМО в верхнем бассейне. С 0 до 6 часов - заполнение верхнего бассейна до отметки НПУ 266,5 и сработка нижнего бассейна до отметки УМО 152,0. С 6 до 16 часов - стационарный режим при УМО в нижнем и НПУ в верхнем бассейне.
Верхний аккумулирующий бассейн расположен на высоком левобережье реки Куньи (абс. отм. от 235 до 268 м). Территория бассейна с северной и южной сторон ограничена крупными оврагами, направленными в долину реки Куньи, и ответвляющимися от них более мелкими оврагами и отвершками.
Фильтрации по линзам и прослоям в основании дамб, а также общее повышение уровня подземных вод, могут привести к увлажнению склонов и нарушению их устойчивости. В связи с этим в проекте было предусмотрено экранирование глинистыми грунтами песчаных линз и прослоев, вскрываемых в котловане верхнего бассейна.
В состав сооружений станционного узла входят: водоприёмник, напopный трубопровод и здание станции. Водоприёмник является головным сооружением напopных трубопроводов. Напopный трубопровод состоит из 6 ниток высоконапopных железобетонных труб с внутренним диаметром 7,5 м, которые укладываются на буронабивные железобетонные сваи диаметром 1200 мм и глубиной до 25 метров. Общая длина трубопровода 662,0 м, уклон от 2° в районе водоприемника до 15° вблизи ГАЭС.
Возможность сосредоточенных выходов напopных вод в откосах котлована при его разработке на этом участке может привести к снижению устойчивости откосов и к их оплыванию благодаря развитию суффозии, а также к оползанию небольших блоков морены, залегающей на водоносных песках.
Здание станции располагается в пойменной части долины реки Куньи. Правый борт долины на участке котлована здания ГЭС и отводящего канала хаpaктеризуются наличием здесь дислоцированных тел морены и парамоновских глин.
Нижний бассейн (водохранилище) располагается в устьевой части долины реки Куньи. При отметке НПУ 162,5 бассейн будет иметь вытянутую форму с извилистой береговой линией и многочисленными заливами по ручьям и оврагам, впадающим в долину реки. Длина бассейна (с севера на юг) около 8 км, ширина переменная от 0,1 до 0,9 км. Глубина бассейна при НПУ 162,5 в пределах от 2-3 м (в хвостовой части) до 20 м (в нижней, приплотинной части).Условия работы ГАЭС определяют сложный режим работы нижнего водохранилища - ежесуточную резкую (в течение 6 часов) сработку от горизонта НПУ 162,5 м до уровня мертвого объема 152,0 м и еще более быстрый (в течение 4 часов) подъем уровня воды.
Резкие колебания уровня воды в водохранилище в условиях сложного геологического строения и наличия оползней могут в значительной степени повлиять на степень устойчивости и деформируемость склонов.
При быстрых изменениях уровня воды в водохранилище кроме оживления оползневых процессов может происходить оплывание глинистого чехла, прикрывающего склоны и суффозионный вынос песков на участках, где берега водохранилища в пределах колебания горизонтов сложены песчаными отложениями. Особенно вероятна суффозия на контактах песков и глин. Указанные выше процессы, наряду с оползнями, могут приводить к нарушению устойчивости и развитию оползневых деформаций естественных склонов.
Для района Загорской ГАЭС хаpaктерны сложные геологические и гидрогеологические условия. Гидрогеологические условия хаpaктеризуются наличием двух водоносных горизонтов в песчаных отложениях, разделяемых водонепроницаемыми толщами глинистых грунтов. Наличие в кровле парамоновских глин обуславливает напopный хаpaктер водоносного горизонта, пьезометрический уровень которого имеет абс. отметки порядка 170 м и величину напора до 30 м.
При оценке напряженно-деформированного состояния склона необходимо учитывать наличие у подножий коренных склонов погребённых смещённых блоков парамоновских глин, которые частично перекрывают сечение водоносного пласта и затрудняют дренирование потока. Возможно, однако, что через отдельные «окна» между этими телами происходит частичная разгрузка горизонта в подморенные пески.
Особенностью динамики развития оползневых деформаций склона является цикличность, обусловленная развитием деформаций ползучести под воздействием естественного гравитационного поля напряжений и циклически меняющихся во времени дополнительных напряжений, вызванных изменением напоров в водоносных горизонтах, обусловленным режимом заполнения-сработки водохранилищ и интенсивностью выпадения атмосферных осадков. Действие этих факторов проявляется во влиянии переменного порового давления на развитие деформаций ползучести в пластах водонасыщенных глинистых грунтов. Механизм развития этого процесса иллюстрируется схемой, представленной на рис. 3.
Рис. 2. Привязка сооружений Загорской ГАЭС к инженерно-геологическому разрезу
Рис. 3. Влияние переменного порового давления на напряжённо-деформированное состояние наклонного пласта водонасыщенного глинистого грунта в точке «М»: 1 - порог вязкопластического течения; 2 - условно-мгновенная прочность
Изменение величины эффективных сжимающих напряжений в наклонных пластах водонасыщенных глинистых грунтов, зависимость от которых скорости вязкого деформирования была установлена в эксперименте (рис. 5), в соответствии с принципом К. Терцаги может быть обусловлено изменением порового давления, развивающегося в пластах под действием напopных вод приграничных водоносных горизонтов.
Рассмотрим напряженное состояние некоторой точки M1 пласта водонасыщенного глинистого грунта, находящейся в зоне действия переменного порового давления. Увеличение порового давления на величину «u» вызывает снижение эффективных сжимающих напряжений в скелете грунта (точка M2) на величину «Δσ». Это способствует увеличению скорости развития деформаций затухающей ползучести в допредельном напряженном состоянии (точка ). Дальнейшее увеличение порового давления (точка M3) приводит к вязко-пластическому течению в запредельном состоянии (точка ), в котором, по истечении некоторого времени, происходит разрушение грунта. При суточном (или сезонном) колебании порового давления в допредельном состоянии (в диапазоне -) происходит постепенное накопление горизонтальных деформаций ползучести. Последнее обстоятельство необходимо учитывать в расчетах напряженно-деформированного состояния устойчивых склонов, целью которых должен быть прогноз величины горизонтальных перемещений склонов и возведенных на них сооружений. При этом необходимо знать порог вязкопластического течения грунтов, испытывающих воздействие циклически меняющихся напоров воды.
Испытания на ползучесть, целью которых было определение порога вязкопластического течения, выполнялись в приборе перекашивания конструкции С.Н. Сотникова. После серии установочных опытов, выполнявшихся в открытой системе при различных значениях нормальных эффективных напряжений, при постоянно действующих и ступенчато прикладываемых касательных нагрузках, была заложена серия из трех опытов, для которых было вырезано 3 образца-близнеца из одного тщательно подготовленного монолита водонасыщенного верхне-четвертичного суглинка, отобранного на левобережном оползневом склоне Ахангаранского водохранилища в Узбекистане. Основные хаpaктеристики физических свойств исследовавшегося грунта: ρ = 1,89 г/см3; ρs = 2,5 г/см3; e = 0,62; W = 23%; Sr = 0,92; WL = 29,7%; WP = 20,7%.
Испытания в приборе перекашивания выполнялись при вертикальных напряжениях σz = 200, 300 и 400 кПа и ступенчато увеличивающихся горизонтальных напряжениях. Величина ступеней горизонтальных напряжений, касательных к плоскости сдвига, была принята равной 4% от величины вертикальных напряжений. Для уменьшения влияния режима загружения, сокращения срока испытаний и повышения точности измерения перемещений, протекающих в стадии затухающей ползучести с невысокими скоростями, каждая ступень касательной нагрузки выдерживалась строго в течение 130 минут, с обязательным снятием отсчетов по измеряющему перемещения индикатору в моменты времени 110 и 130 минут (рис. 4). Это позволило с достаточной точностью определить средние скорости деформирования, соответствующие t = 120 мин для каждой ступени касательной нагрузки.
Рис. 4. Результаты исследований ползучести покровного суглинка при сдвиге в режиме ступенчатого нагружения (σz = 400 кПа; Δτ1 - 12 = 0,04· σz = 16 кПа)
Кроме того были выполнены исследования прочности суглинка в приборе прямого одноплоскостного среза ГГП-ЗО по методике регламентируемой ГОСТ 12248-96 и методом сдвига «плашки по плашке», в результате которых оказалось, что сцепление в грунте отсутствует, а «стандартная» прочность равна остаточной (рис. 6). Последнее, подтвержденное многократным повторением сдвига образца по заранее приготовленной плоскости среза, указывает на коагуляционный хаpaктер слабых межчастичных связей в водонасыщенном образце суглинка, легко восстанавливающихся при совмещении «плашек» и обжатии их в грунтоприёмной камере срезного прибора вертикальным давлением.
Рис. 5. Реологические кривые суглинка.
В результате выполненных экспериментов был определен порог вязко-пластического течения, который оказался ниже остаточной прочности суглинка (рис. 5). Было установлено также, что переход из области вязкого в область вязко-пластического деформирования на реологических кривых γ = γ(τ) происходит при пpaктически постоянной для данного момента времени (t = 120 мин) скорости деформирования, не зависящей от величины сжимающего напряжения (рис. 5).
Рис. 6. Диаграммы прочности суглинка: 1 - условно-мгновенная прочность; 2 - «стандартная» и остаточная прочность; 3 - порог вязкопластического течения
Статья в формате PDF
113 KB...
15 02 2025 20:44:58
Статья в формате PDF
118 KB...
14 02 2025 23:59:42
Статья в формате PDF
259 KB...
13 02 2025 16:19:23
12 02 2025 21:16:50
Статья в формате PDF
110 KB...
11 02 2025 1:14:14
Статья в формате PDF
145 KB...
10 02 2025 21:32:56
Статья в формате PDF
132 KB...
09 02 2025 2:32:49
Статья в формате PDF
149 KB...
08 02 2025 7:35:56
Статья в формате PDF
250 KB...
07 02 2025 17:31:23
Статья в формате PDF
127 KB...
05 02 2025 15:44:18
Статья в формате PDF
113 KB...
04 02 2025 22:47:57
Статья в формате PDF
105 KB...
03 02 2025 3:41:47
Статья в формате PDF
125 KB...
02 02 2025 3:34:45
Статья в формате PDF
263 KB...
01 02 2025 4:15:24
Статья в формате PDF
133 KB...
31 01 2025 22:35:33
Статья в формате PDF
135 KB...
30 01 2025 21:27:39
Статья в формате PDF
364 KB...
28 01 2025 1:17:31
27 01 2025 4:24:46
Статья в формате PDF
125 KB...
26 01 2025 21:26:39
Статья в формате PDF
245 KB...
25 01 2025 4:28:43
Статья в формате PDF
117 KB...
24 01 2025 23:58:10
Статья в формате PDF
112 KB...
21 01 2025 5:11:20
Статья в формате PDF
103 KB...
20 01 2025 10:41:44
Летом 2012 года был проведен мониторинг расхода воды на малом водотоке. Мерный сосуд был принят в виде ковша емкостью один литр. Все измерения проводились вечером с 17-00 часов. Поэтому текущее время берется целыми сутками. Модель динамики имеет две составляющие: первая составляющая является законом экспоненциального роста, а вторая волновым возмущением с переменными амплитудой и частотой колебания. Показана методика моделирования с процеДypaми: 1) выявление постоянного члeна; 2) по остаткам от постоянного члeна, последовательно усложняя конструкцию, идентифицируется волновая функция; 3) постоянный члeн совмещается с волновой функцией; 4) усложняется конструкция тренда до устойчивого не волнового закона.
...
19 01 2025 13:39:31
Статья в формате PDF
286 KB...
18 01 2025 16:33:31
Статья в формате PDF
276 KB...
17 01 2025 10:32:10
Статья в формате PDF
132 KB...
16 01 2025 0:24:45
Статья в формате PDF
114 KB...
15 01 2025 10:18:49
Статья в формате PDF
138 KB...
14 01 2025 3:49:59
13 01 2025 3:29:30
Статья в формате PDF
309 KB...
12 01 2025 23:37:53
Статья в формате PDF
118 KB...
11 01 2025 16:31:21
Статья в формате PDF
112 KB...
10 01 2025 20:29:42
Статья в формате PDF
267 KB...
09 01 2025 11:57:49
Статья в формате PDF
327 KB...
07 01 2025 9:55:59
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::