КИНЕТИКА КАТАЛИТИЧЕСКОГО ОКИСЛЕНИЯ ВОДНО-ЛИПИДНЫХ СИСТЕМ
В настоящее время в качестве молекулярного механизма развития многих патологий принята гипотеза о нарушении проницаемости биомембран за счет изменения интенсивности свободнорадикального окисления липидов [1].
Особенно большое внимание уделяется свободнорадикальному механизму старения, адаптации к нeблагоприятным воздействиям окружающей среды, режима трудовой деятельности, а также развитию paковых заболеваний.
Для профилактики и лечения различных физиологических состояний и патологий широко применяется антиоксидантотерапия.
Очевидно, что прогресс в антиоксидантотерапии возможен на основе разработки биоадекватных способов тестирования антиоксидантов. Как известно, липиды в клетке образуют водно-эмульсионные системы, включающие аминокислотные и белковые компоненты, ферменты. Последние, чаще всего, представляют собой координационные соединения (КС) и содержат катионы железа, меди и других элементов в качестве координационного центра. В то же время известные способы тестирования антиоксидантов [2, 3] рассчитаны на безводную среду, применение в качестве субстратов углеводов: этилбензола, кумола или растворов этилолеата, метиллинолеата в хлорбензоле.
В настоящем сообщении приведены результаты исследования кинетики каталитического окисления водно-липидных субстратов с целью разработки биоадекватного метода тестирования антиоксидантов.
С этой целью изучено, прежде всего, мицеллообразование в двух-, трехкомпонентных системах: этилолеат - вода; этилолеат - вода - эмульгатор. По наименьшей величине критической концентрации мицеллообразования выбран состав водно-липидного субстрата, включающий этилолеат и воду в соотношении 1:3 (по объему) и цетилтриметиламмоний бромид в качестве эмульгатора в концентрации (1-3)·10-3 моль/л.
Далее исследовано влияние солей d-элементов четвертого периода периодической системы элементов на кинетику окисления водно-липидного субстрата. С этой целью окисление пробы проводят в термостатированной ячейке при 60±0,2ºС. Волюмометрически, при оптимальной скорости перемешивания определяют объем поглощенного кислорода во времени.
В указанных условиях исследована кинетика окисления водно-липид-ного субстрата в присутствии CuCl2, FeCl2, FeCl3, CoCl2, NiCl2 в зависимости от концентрации. Показано, что наиболее активным катализатором является хлорид меди, а активность остальных солей падает в ряду: Cu2+ > Fe2+ > Fe3+ > Co2+ > Ni2+.
В зависимости от концентрации катионов скорость процесса окисления этилолеата меняется экстремально. Для большинства катионов наибольшая скорость достигается при концентрациях (1-3)·10-3 моль/л. Особенно высокие скорости процесса в этой области концентраций достигаются в присутствии катионов меди. В сравнении с Fe2+ эта скорость увеличивается в 2 раза, а по сравнению с другими катионами - многократно. В дальнейших исследованиях в качестве катализатора выбраны катионы меди в концентрации (1-3)·10-3 моль/л.
Поскольку катионы металлов присутствуют в клетке в виде КС, чаще всего с остатками аминокислот в виде лигандов, то для разработки биоадекватного способа тестирования средств антиоксидантотерапии изучена кинетика окисления водно-липидного субстрата в присутствии КС катионов меди с α-аминокислотами. Предварительно для некоторых аминокислот изучен состав КС, константы устойчивости. Эти результаты совпадают с известными литературными данными [4], согласно которым большинство α-аминокислот образуют хелатные КС состава: «катион меди - аминокислота» 1 : 2 и логарифмами констант устойчивости равными 6 - 7. Показано, что оптимальное комплексообразование происходит в интервале рН 8 - 11, который соответствует боратному буферному раствору.
Далее исследована кинетика окисления водно-липидного субстрата при оптимальном рН в присутствии КС меди с каждой из аминокислот: α-аланин, валин, треонин, лизин, фенилаланин, лейцин, серин, гистидин. С этой целью пробу этилолеата смешивают с водными растворами эмульгатора и КС. Раствор КС готовят смешиванием водных растворов хлорида меди (II), аминокислоты и доводят буферным раствором до необходимой концентрации компонентов в пробе субстрата. При этом концентрация катионов меди составляет 2·10-3 моль/л, а аминокислоты - 1·10-2 моль/л. Предусмотрен избыток аминокислоты, который гарантирует устойчивость комплекса в субстрате. В этих условиях волюмометрически исследуют кинетику окисления водно-липидного субстрата в зависимости от природы аминокислоты и сравнивают результаты с контрольной пробой, состав которой описан выше. В результате показано отсутствие активности у треонина и лизина, слабая ингибирующая активность у гистидина и серина, более сильная ингибирующая активность у лейцина и фенилаланина. Координационные соединения α-аланина и валина проявляют сильный каталитический эффект.
На основании этих результатов разpaбатывается биоадекватный метод тестирования средств антиоксидантотерапии с участием координационного соединения меди и α-аланина.
Также более подробно исследуется кинетика окисления водно-липид-ного субстрата в присутствии КС фенилаланина и лейцина с целью их использования в качестве средств антиоксидантотерапии.
СПИСОК ЛИТЕРАТУРЫ
- Зенков Н.К. Активированные кислородные метаболиты в биологических системах / Н.К. Зенков, Е.Б. Меньшикова // Усп. совр. биол. - 1993. - Т. 113. - № 3. - С. 286-297.
- Денисов Е.Т. Ингибирование цепных реакций / Е.Т. Денисов, Н.М. Эмануэль, В.В. Азатян. - Черноголовка: ИХФ РАН, 1997. - 370 с.
- Касаикина О.Т. Ингибирующая активность природных фенольных антиоксидантов в процессах окисления липидных субстратов / О.Т. Касаикина, В.Д. Кортенска, Э.М. Маринова, И.Ф. Русина, Н.В. Янишлиева // Известия РАН. Сер. хим. - 1997. - № 6. - С. 1119-1122.
- Яцимирский К.Б. Константы устойчивости комплексов металлов с биолигандами: Справочник / К.Б. Яцимирский, Е.Е. Крисс, В.Л. Гвяздовская - Киев: Наук. Думка, 1979. - 228 с.
Статья в формате PDF 174 KB...
21 01 2025 3:29:43
Исследования проведены на 128 пoлoвoзрелых крысах различного пола, содержавшихся в «курительных камерах» в течение 60 дней с ежедневной затравкой животных в течение 1 часа. Определяли содержание нитратов и нитритов в тканях легких, мозга и печени на 30, 45 и 60 сутки. Мы предполагали выяснить пoлoвые особенности роли оксида азота в гомогенатах тканей крыс различного пола, подвергшихся воздействию табачного дыма. Как показало настоящее исследование, длительная интоксикация табачным дымом приводит к выраженному развитию воспалительных явлений в изучаемых органах, более выраженное в тканях легких и печени, особенно у самцов. В генезе выявленных морфологических и морфометрических изменений в исследуемых тканях лежит активизация индуцибельной формы оксида азота, что приводит к прогрессированию воспалительных и оксидативных явлений. Выявлен пoлoвoй диморфизм в регуляции уровня оксида азота. ...
20 01 2025 0:12:59
Статья в формате PDF 285 KB...
19 01 2025 9:28:38
Исследование факторов тревожности является ключевым подходом к пониманию адаптационных механизмов в норме и дезадаптационных расстройств в случаях доминировании тревожности. Повышенные уровни тревожности чаще выявляются у школьников первых классов и студентов первых курсов. У старших школьников и студентов отмечается снижение уровней тревожности, благодаря механизмам психологической адаптации. Напротив, у преподавателей повышение показателей дезадаптации – невротизации и эмоционального «выгорания», коррелирует со стажем работы. Исследованы информированность молодёжи о наркомании, алкоголизме, здоровом образе жизни и её адаптационная направленность. Полученные данные необходимо учитывать при реформах образовательных программ и стандартов. ...
18 01 2025 23:36:34
Статья в формате PDF 170 KB...
17 01 2025 9:54:46
Статья в формате PDF 112 KB...
16 01 2025 20:47:53
Статья в формате PDF 111 KB...
15 01 2025 20:58:11
Статья в формате PDF 299 KB...
14 01 2025 0:17:18
Статья в формате PDF 109 KB...
13 01 2025 12:13:52
Статья в формате PDF 158 KB...
12 01 2025 7:54:34
Статья в формате PDF 129 KB...
11 01 2025 6:27:10
Статья в формате PDF 140 KB...
10 01 2025 10:59:24
Приведены методы ранжирования и рангового моделирования гидрологических параметров у множества крупных рек Земли по примеру статистических данных из учебника. ...
09 01 2025 12:31:59
Статья в формате PDF 160 KB...
08 01 2025 23:34:45
Статья в формате PDF 112 KB...
07 01 2025 3:54:45
Статья в формате PDF 114 KB...
06 01 2025 15:55:36
Статья в формате PDF 114 KB...
05 01 2025 15:47:38
Статья в формате PDF 252 KB...
03 01 2025 4:44:44
Статья в формате PDF 117 KB...
02 01 2025 6:14:21
Статья в формате PDF 115 KB...
31 12 2024 17:51:59
Статья в формате PDF 401 KB...
30 12 2024 17:49:25
Статья в формате PDF 116 KB...
28 12 2024 6:52:34
Статья в формате PDF 116 KB...
26 12 2024 19:59:42
25 12 2024 11:41:46
24 12 2024 4:37:12
Статья в формате PDF 259 KB...
23 12 2024 23:48:43
Статья в формате PDF 112 KB...
22 12 2024 23:54:21
Статья в формате PDF 264 KB...
20 12 2024 12:45:17
Статья в формате PDF 121 KB...
19 12 2024 5:30:44
Статья в формате PDF 729 KB...
18 12 2024 10:25:42
Статья в формате PDF 105 KB...
17 12 2024 21:53:33
Статья в формате PDF 116 KB...
16 12 2024 15:56:24
Статья в формате PDF 122 KB...
15 12 2024 22:29:22
Статья в формате PDF 245 KB...
14 12 2024 10:37:30
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::