ФУНКЦИЯ СОСТОЯНИЯ В КЛАССИЧЕСКОЙ МЕХАНИКЕ И ТЕОРИИ ПОЛЯ > Полезные советы
Тысяча полезных мелочей    

ФУНКЦИЯ СОСТОЯНИЯ В КЛАССИЧЕСКОЙ МЕХАНИКЕ И ТЕОРИИ ПОЛЯ

ФУНКЦИЯ СОСТОЯНИЯ В КЛАССИЧЕСКОЙ МЕХАНИКЕ И ТЕОРИИ ПОЛЯ

Пономарев Ю.И.

В работе показано, что фундаментальные принципы классической механики и теории поля - принцип наименьшего действия и калибровочная инвариантность полей  и  электромагнитного поля - есть прямое следствие существования уже в рамках классической физики функции состояния.

Статья в формате PDF 129 KB

Происхождение физических законов всегда привлекало к себе внимание. Почему законы природы имеют именно существующий вид, а не другой? Существуют ли некоторые всеобщие законы или принципы их построения? Аналитическая механика может быть сформулирована на основе принципа наименьшего действия, утверждающего, что существует некоторая функция, называемая действием

,                 (1)

которая для реальных траекторий принимает экстремальное значение. Природа этой загадочной функции, также как и происхождение этого принципа, до конца не ясна. Но, тем не менее, эти неопределенности не мешают получать известные нам законы классической динамики, необходимо только подобрать правильный вид функции Лагранжа. Поэтому принцип наименьшего действия носит больше обобщающий хаpaктер и вряд ли может служить полноценным инструментом для логически безупречного обоснования законов природы.

Такой же загадочный ореол и у другого важнейшего динамического принципа теории поля - принципа калибровочной инвариантности. Существует ли принципы ещё более общие, чем вышеназванные?

Язык общения с природой выбирает сам человек. В процессе экспериментального исследования он подбирает величины, которые, по его мнению, наиболее оптимально описывают состояния тел и процессы. Отношения между этими величинами мы называем законами природы. Эксперимент же определяет минимальное и в то же время достаточное количество параметров, необходимых для однозначного описания состояния тела. Будет ли такой набор параметров единственно возможным, нам неизвестно.

В нашей работе предложен подход, позволяющий сформулировать в наиболее общем виде законы классической механики и теории поля с привлечением минимального количества исходных положений и данных. Будем исходить из того, что существует некоторая функция П, определяющая состояние частицы. От каких величин она может зависеть? В качестве минимального количества параметров мы принимаем координаты и время, а для несвободной частицы - ещё и константу взаимодействия: П( , , Δt). Время будем отсчитывать от некоторого начального значения tн, а координаты от некоторого начального значения :

Если отсчет времени и координат ведётся от tн=0 и , то Δt совпадает с t и Δr совпадает с . Рассмотрим более детально переменные и t. В произвольно выбранный начальный момент времени tн эти переменные независимы, поскольку начать измерение можно в любой точке прострaнcтва и в любой момент времени. В дальнейшем, в результате некоторого реального процесса, связанного с частицей, ее координаты изменятся на .

.                           (2)

Вследствие этих предположений независимыми параметрами, задающими состояние в произвольный момент времени, являются три величины:  и Δt  .

Рассмотрим процесс движения свободной частицы. Поскольку П - функция определяет состояние, то бесконечно малое изменение этого состояния определяется ее полным дифференциалом

.                  (3)

Введем обозначения:

                             (4)

                         (5)

функциональная производная:

.                (6)

В этих обозначениях дифференциал функции состояния П запишется в виде

.                                                (7)

Условиями того, что  является полным дифференциалом, а  и W явно от времени не зависят, то

           (8)

          (9)

.                        (10)

Если предположить независимость функции L от выбора начала отсчета координат , то отсюда следует сохранение вдоль траектории величин , которая носит название импульса и W, которая носит название энергии. Величина L является ничем иным, как функцией Лагранжа для свободной частицы.

Перейдем к рассмотрению случая, когда частица не свободна и взаимодействует с другой частицей, находящейся от нее на расстоянии . Будем считать, что П-функция аддитивно содержит функцию взаимодействия : . Предположим для простоты, что вторая частица покоится. Введем обозначения:

, , ,

, , .                (11)

В этом случае формулы (8), (9), (10) сохраняют свой вид, но под W, , L величинами следует понимать обозначения (11). Пользуясь формулами векторного анализа аналогично [1], получаем:

.        (12)

Уравнение (9) в случае независимости L от выбора начального момента времени и неподвижности второй частицы приводит к закону сохранения энергии в виде:

.

В частном случае, если принять , где заряд q является константой взаимодействия, вводим обозначения:

, , , .                   (13)

После несложных преобразований можем получить уравнение, выражающее силу, действующую на заряд со стороны электромагнитного поля:

.                      (14)

С учетом обозначений в случае взаимодействия уравнение (10) можно записать в виде , для электромагнитного поля , тогда

.            (15)

Поскольку , у частицы возникает вращательное движение с мгновенной угловой скоростью , и ее импульс в этом случае запишется как , значит . Дальнейшие преобразования приводят нас к теореме Лармора:

.                        (16)

Мы видим, что основное уравнение механики, законы сохранения и теорема Лармора вместе наиболее полно отражают законы динамики. Мы видим, что связь энергии, импульса, координаты и времени во втором законе механики реализуется через функцию состояния.

Наш подход позволяет вывести и дать несколько другую тpaктовку фундаментальным динамическим принципам: наименьшего действия и калибровочной инвариантности. В частности, полагая tн=0 и rн=0 и интегрируя по промежутку времени от t1 до t2 получаем из (7) выражение

при фиксированных значениях t1 и t2 значение действия S не зависит от выбора траектории перехода .

Становится понятной уже в рамках классической физики происхождение принципа калибровочной инвариантности, по которому динамические величины  и  являются инвариантными относительно градиентных преобразований:

, .                               (17)

Легко убедиться в том, что эти преобразования есть следствие преобразования П-функции .

Развитый в работе принцип построения законов динамики не требует предварительного знания этих законов. Он показывает, что появление в теории таких динамических величин, как энергия, импульс с необходимостью следует из выбора прострaнcтвенно-временного способа описания событий. Введение заряда, как константы взаимодействия и как можно показать учёт симметрии взаимодействия автоматически приводит к уравнениям электродинамики.

Принцип наименьшего действия, как и принцип преобразования калибровки, является следствием и указанием на уже в рамках классической физики существование функции состояния.

СПИСОК ЛИТЕРАТУРЫ:

  1. Ландау Л.Д., Лифшиц Е.М. Теория поля. - М.: Наука, 1998.


АНАЛИЗ ПРОТОКОЛОВ КВАНТОВОЙ КРИПТОГРАФИИ ВВ84 И В92

АНАЛИЗ ПРОТОКОЛОВ КВАНТОВОЙ КРИПТОГРАФИИ ВВ84 И В92 Статья в формате PDF 151 KB...

20 05 2024 3:56:54

СОСТАВ КОСТНОГО МОЗГА И СОДЕРЖАНИЕ В НЕМ ЭРИТРОКЛАЗИЧЕСКИХ КЛАСТЕРОВ ПРИ ПИРОГЕНАЛОВОЙ ЛИХОРАДКЕ

СОСТАВ КОСТНОГО МОЗГА И СОДЕРЖАНИЕ В НЕМ ЭРИТРОКЛАЗИЧЕСКИХ КЛАСТЕРОВ ПРИ ПИРОГЕНАЛОВОЙ ЛИХОРАДКЕ Проведено исследование хаpaктера образования эритроклазических костномозговых кластеров при лихорадке у лабораторных животных. Установлено, что лихорадка сопровождается увеличением клеточности костного мозга, активацией эритроклазического кластерообразования нейтрофильными миелокариоцитами и макрофагами, сопровождающегося усилением экзоцитарного лизиса эритроцитов в кластерах, то есть увеличением цитолитической активности данных миелокариоцитов. ...

17 05 2024 11:14:10

ВЕДУЩИЙ МЕХАНИЗМ ИММУНОПАТОЛОГИЧЕСКОГО ПРОЦЕССА ПРИ ПСОРИАТИЧЕ-СКОЙ БОЛЕЗНИ

ВЕДУЩИЙ МЕХАНИЗМ ИММУНОПАТОЛОГИЧЕСКОГО ПРОЦЕССА ПРИ ПСОРИАТИЧЕ-СКОЙ БОЛЕЗНИ С целью уточнения хаpaктера иммунопатологического процесса при псориатической болезни и выяснения аутоиммунного механизма воспаления авторами проведено клинико-иммунологическое обследование 132 больных псориатической болезнью. Комплексное иммунологическое обследование пациентов с определением содержания органоспецифических и органонеспецифических аутоантител к различным тканевым и органным антигенам позволило определить аутоиммунный тип иммунной патологии как один из ведущих механизмов воспаления при данной патологии. ...

12 05 2024 9:10:25

МОББИНГ И БЕЗОПАСНОСТЬ ТРУДА

МОББИНГ И БЕЗОПАСНОСТЬ ТРУДА Статья в формате PDF 271 KB...

04 05 2024 19:33:37

ЛИДИЯ ПЕТРОВНА ИОНОВА

ЛИДИЯ ПЕТРОВНА ИОНОВА Статья в формате PDF 402 KB...

30 04 2024 10:49:20

ПРОБЛЕМЫ НАУЧНОЙ ШКОЛЫ В РОССИИ

ПРОБЛЕМЫ НАУЧНОЙ ШКОЛЫ В РОССИИ Статья в формате PDF 114 KB...

28 04 2024 8:38:33

ГЕНДЕРНЫЕ АСПЕКТЫ СЕРДЕЧНО-СОСУДИСТОЙ ПАТОЛОГИИ

ГЕНДЕРНЫЕ АСПЕКТЫ СЕРДЕЧНО-СОСУДИСТОЙ ПАТОЛОГИИ Статья в формате PDF 313 KB...

26 04 2024 3:49:55

ФИЗИОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ ПРОИЗВОДИТЕЛЕЙ ОСЕТРОВЫХ РЫБ В СОВРЕМЕННЫХ ЭКОЛОГИЧЕСКИХ УСЛОВИЯХ

ФИЗИОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ ПРОИЗВОДИТЕЛЕЙ ОСЕТРОВЫХ РЫБ В СОВРЕМЕННЫХ ЭКОЛОГИЧЕСКИХ УСЛОВИЯХ Изучено влияние реципрокных скрещиваний озимых и яровых групп осетра на их морфофункциональную хаpaктеристику и рыбоводные качества потомства при заводском разведении, выявлено преимущество гибридной формы по проценту оплодотворения, выживаемости в инкубационный период и на этапе перехода личинок на активное питание. Обнаружены нарушения структуры и клеточного метаболизма органов и тканей производителей осетровых рыб. ...

20 04 2024 6:23:25

ГЕМОРЕОЛОГИЯ И МОЗГОВОЙ КРОВОТОК У БОЛЬНЫХ ХРОНИЧЕСКИМИ ГНОЙНЫМИ СИНУИТАМИ ПРИ ТРАВМАХ ГОЛОВЫ

ГЕМОРЕОЛОГИЯ И МОЗГОВОЙ КРОВОТОК У БОЛЬНЫХ ХРОНИЧЕСКИМИ ГНОЙНЫМИ СИНУИТАМИ ПРИ ТРАВМАХ ГОЛОВЫ В работе изучен мозговой кровоток и его взаимосвязь с нарушением гемореологии у больных хроническими гнойными заболеваниями придаточных пазух носа в остром периоде черепно-мозговой травмы. ...

19 04 2024 8:40:40

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::