ФУНКЦИЯ СОСТОЯНИЯ В КЛАССИЧЕСКОЙ МЕХАНИКЕ И ТЕОРИИ ПОЛЯ > Полезные советы
Тысяча полезных мелочей    

ФУНКЦИЯ СОСТОЯНИЯ В КЛАССИЧЕСКОЙ МЕХАНИКЕ И ТЕОРИИ ПОЛЯ

ФУНКЦИЯ СОСТОЯНИЯ В КЛАССИЧЕСКОЙ МЕХАНИКЕ И ТЕОРИИ ПОЛЯ

Пономарев Ю.И.

В работе показано, что фундаментальные принципы классической механики и теории поля - принцип наименьшего действия и калибровочная инвариантность полей  и  электромагнитного поля - есть прямое следствие существования уже в рамках классической физики функции состояния.

Статья в формате PDF 129 KB

Происхождение физических законов всегда привлекало к себе внимание. Почему законы природы имеют именно существующий вид, а не другой? Существуют ли некоторые всеобщие законы или принципы их построения? Аналитическая механика может быть сформулирована на основе принципа наименьшего действия, утверждающего, что существует некоторая функция, называемая действием

,                 (1)

которая для реальных траекторий принимает экстремальное значение. Природа этой загадочной функции, также как и происхождение этого принципа, до конца не ясна. Но, тем не менее, эти неопределенности не мешают получать известные нам законы классической динамики, необходимо только подобрать правильный вид функции Лагранжа. Поэтому принцип наименьшего действия носит больше обобщающий хаpaктер и вряд ли может служить полноценным инструментом для логически безупречного обоснования законов природы.

Такой же загадочный ореол и у другого важнейшего динамического принципа теории поля - принципа калибровочной инвариантности. Существует ли принципы ещё более общие, чем вышеназванные?

Язык общения с природой выбирает сам человек. В процессе экспериментального исследования он подбирает величины, которые, по его мнению, наиболее оптимально описывают состояния тел и процессы. Отношения между этими величинами мы называем законами природы. Эксперимент же определяет минимальное и в то же время достаточное количество параметров, необходимых для однозначного описания состояния тела. Будет ли такой набор параметров единственно возможным, нам неизвестно.

В нашей работе предложен подход, позволяющий сформулировать в наиболее общем виде законы классической механики и теории поля с привлечением минимального количества исходных положений и данных. Будем исходить из того, что существует некоторая функция П, определяющая состояние частицы. От каких величин она может зависеть? В качестве минимального количества параметров мы принимаем координаты и время, а для несвободной частицы - ещё и константу взаимодействия: П( , , Δt). Время будем отсчитывать от некоторого начального значения tн, а координаты от некоторого начального значения :

Если отсчет времени и координат ведётся от tн=0 и , то Δt совпадает с t и Δr совпадает с . Рассмотрим более детально переменные и t. В произвольно выбранный начальный момент времени tн эти переменные независимы, поскольку начать измерение можно в любой точке прострaнcтва и в любой момент времени. В дальнейшем, в результате некоторого реального процесса, связанного с частицей, ее координаты изменятся на .

.                           (2)

Вследствие этих предположений независимыми параметрами, задающими состояние в произвольный момент времени, являются три величины:  и Δt  .

Рассмотрим процесс движения свободной частицы. Поскольку П - функция определяет состояние, то бесконечно малое изменение этого состояния определяется ее полным дифференциалом

.                  (3)

Введем обозначения:

                             (4)

                         (5)

функциональная производная:

.                (6)

В этих обозначениях дифференциал функции состояния П запишется в виде

.                                                (7)

Условиями того, что  является полным дифференциалом, а  и W явно от времени не зависят, то

           (8)

          (9)

.                        (10)

Если предположить независимость функции L от выбора начала отсчета координат , то отсюда следует сохранение вдоль траектории величин , которая носит название импульса и W, которая носит название энергии. Величина L является ничем иным, как функцией Лагранжа для свободной частицы.

Перейдем к рассмотрению случая, когда частица не свободна и взаимодействует с другой частицей, находящейся от нее на расстоянии . Будем считать, что П-функция аддитивно содержит функцию взаимодействия : . Предположим для простоты, что вторая частица покоится. Введем обозначения:

, , ,

, , .                (11)

В этом случае формулы (8), (9), (10) сохраняют свой вид, но под W, , L величинами следует понимать обозначения (11). Пользуясь формулами векторного анализа аналогично [1], получаем:

.        (12)

Уравнение (9) в случае независимости L от выбора начального момента времени и неподвижности второй частицы приводит к закону сохранения энергии в виде:

.

В частном случае, если принять , где заряд q является константой взаимодействия, вводим обозначения:

, , , .                   (13)

После несложных преобразований можем получить уравнение, выражающее силу, действующую на заряд со стороны электромагнитного поля:

.                      (14)

С учетом обозначений в случае взаимодействия уравнение (10) можно записать в виде , для электромагнитного поля , тогда

.            (15)

Поскольку , у частицы возникает вращательное движение с мгновенной угловой скоростью , и ее импульс в этом случае запишется как , значит . Дальнейшие преобразования приводят нас к теореме Лармора:

.                        (16)

Мы видим, что основное уравнение механики, законы сохранения и теорема Лармора вместе наиболее полно отражают законы динамики. Мы видим, что связь энергии, импульса, координаты и времени во втором законе механики реализуется через функцию состояния.

Наш подход позволяет вывести и дать несколько другую тpaктовку фундаментальным динамическим принципам: наименьшего действия и калибровочной инвариантности. В частности, полагая tн=0 и rн=0 и интегрируя по промежутку времени от t1 до t2 получаем из (7) выражение

при фиксированных значениях t1 и t2 значение действия S не зависит от выбора траектории перехода .

Становится понятной уже в рамках классической физики происхождение принципа калибровочной инвариантности, по которому динамические величины  и  являются инвариантными относительно градиентных преобразований:

, .                               (17)

Легко убедиться в том, что эти преобразования есть следствие преобразования П-функции .

Развитый в работе принцип построения законов динамики не требует предварительного знания этих законов. Он показывает, что появление в теории таких динамических величин, как энергия, импульс с необходимостью следует из выбора прострaнcтвенно-временного способа описания событий. Введение заряда, как константы взаимодействия и как можно показать учёт симметрии взаимодействия автоматически приводит к уравнениям электродинамики.

Принцип наименьшего действия, как и принцип преобразования калибровки, является следствием и указанием на уже в рамках классической физики существование функции состояния.

СПИСОК ЛИТЕРАТУРЫ:

  1. Ландау Л.Д., Лифшиц Е.М. Теория поля. - М.: Наука, 1998.


РАЗРАБОТКА ЭЛЕМЕНТОВ КОНТРОЛЯ ДЛЯ COMPUTER-TO-PLATE-СИСТЕМ

РАЗРАБОТКА ЭЛЕМЕНТОВ КОНТРОЛЯ ДЛЯ COMPUTER-TO-PLATE-СИСТЕМ Статья в формате PDF 112 KB...

27 09 2023 10:47:10

РОМАШОВ РОБЕРТ ВАСИЛЬЕВИЧ

РОМАШОВ РОБЕРТ ВАСИЛЬЕВИЧ Статья в формате PDF 174 KB...

24 09 2023 9:12:27

АНДРЕЕВА МАРИЯ АНДРЕЕВНА

АНДРЕЕВА МАРИЯ АНДРЕЕВНА Статья в формате PDF 84 KB...

23 09 2023 16:40:12

СОВРЕМЕННЫЕ GRID – ТЕХНОЛОГИИ

СОВРЕМЕННЫЕ GRID – ТЕХНОЛОГИИ Статья в формате PDF 254 KB...

22 09 2023 14:35:22

ВЫБОР СПОСОБА ОБРАБОТКИ ДЕТАЛЕЙ ГИДРОУДАРНИКА

ВЫБОР СПОСОБА ОБРАБОТКИ ДЕТАЛЕЙ ГИДРОУДАРНИКА Статья в формате PDF 284 KB...

16 09 2023 13:33:54

ЧАЙКОВСКИЙ ВИТОЛЬД КАЗИМИРОВИЧ

ЧАЙКОВСКИЙ ВИТОЛЬД КАЗИМИРОВИЧ Статья в формате PDF 327 KB...

11 09 2023 23:31:34

К СТРАТЕГИИ ОБРАЗОВАНИЯ XXI ВЕКА

К СТРАТЕГИИ ОБРАЗОВАНИЯ XXI ВЕКА Статья в формате PDF 154 KB...

06 09 2023 7:47:22

ПЛАТИНА И ПЛАТИОИДЫ В ОФИОЛИТАХ САЛАИРА, АЛТАЯ И ГОРНОЙ ШОРИИ

ПЛАТИНА И ПЛАТИОИДЫ В ОФИОЛИТАХ САЛАИРА,  АЛТАЯ И ГОРНОЙ ШОРИИ Приведены данные по распространению элементов платиновой группы (ЭПГ) в офиолитах Салаира, Алтая и Горной Шории. ЭПГ в наибольших концентрациях отмечены в проявлениях хромитов, образующих подиформные залежи, а также в никелевых проявлениях с обильными сульфидами меди, никеля и кобальта. Минералы ЭПГ представлены изоферроплатиной, иридосмином и рутениридосмином. Реже встречаются самородная платина, рутениевый невъянскит и рутениевый сысерскит. В рудных телах также присутствуют в повышенных концентрациях золото и серебро. Состав минеральных фаз платиноидов указывает на близость к восточно-уральскому геолого-промышленному типу, связанному с изверженными породами габбро-клинопироксенит-перидотитовой формации. ...

05 09 2023 23:50:46

Черкесов Борис Адамович

Черкесов Борис Адамович Статья в формате PDF 101 KB...

27 08 2023 15:24:38

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::

О ЕСТЕСТВЕННОМ ЗАРАСТАНИИ И РЕКУЛЬТИВАЦИИ НАРУШЕННЫХ ЗЕМЕЛЬ СЕВЕРА

Естественное восстановление растительности на нарушенных землях Севера протекает с различной скоростью и зависит от литологического состава грунтов, рельефа, условий увлажнения, специфики нарушений и других факторов. Проведенные исследования, анализ и обобщение опыта восстановления нарушенных территорий Севера свидетельствует о значительной сложности и специфичности рекультивационных работ. К объектам Севера в большинстве случаев не применимы основные положения и приемы в области рекультивации земель, разработанные в целом для России. Разнообразие природных комплексов – от таёжных ландшафтов до лесотундры и арктической тундры, специфика нарушений, обусловленных геологоразведочными, изыскательскими, строительными и добычными работами обусловливает необходимость дифференцированного подхода к каждому объекту рекультивации при решении вопросов восстановления нарушенных земель.