ФУНКЦИЯ СОСТОЯНИЯ В КЛАССИЧЕСКОЙ МЕХАНИКЕ И ТЕОРИИ ПОЛЯ
В работе показано, что фундаментальные принципы классической механики и теории поля - принцип наименьшего действия и калибровочная инвариантность полей и электромагнитного поля - есть прямое следствие существования уже в рамках классической физики функции состояния.
Статья в формате PDF 129 KBПроисхождение физических законов всегда привлекало к себе внимание. Почему законы природы имеют именно существующий вид, а не другой? Существуют ли некоторые всеобщие законы или принципы их построения? Аналитическая механика может быть сформулирована на основе принципа наименьшего действия, утверждающего, что существует некоторая функция, называемая действием
, (1)
которая для реальных траекторий принимает экстремальное значение. Природа этой загадочной функции, также как и происхождение этого принципа, до конца не ясна. Но, тем не менее, эти неопределенности не мешают получать известные нам законы классической динамики, необходимо только подобрать правильный вид функции Лагранжа. Поэтому принцип наименьшего действия носит больше обобщающий хаpaктер и вряд ли может служить полноценным инструментом для логически безупречного обоснования законов природы.
Такой же загадочный ореол и у другого важнейшего динамического принципа теории поля - принципа калибровочной инвариантности. Существует ли принципы ещё более общие, чем вышеназванные?
Язык общения с природой выбирает сам человек. В процессе экспериментального исследования он подбирает величины, которые, по его мнению, наиболее оптимально описывают состояния тел и процессы. Отношения между этими величинами мы называем законами природы. Эксперимент же определяет минимальное и в то же время достаточное количество параметров, необходимых для однозначного описания состояния тела. Будет ли такой набор параметров единственно возможным, нам неизвестно.
В нашей работе предложен подход, позволяющий сформулировать в наиболее общем виде законы классической механики и теории поля с привлечением минимального количества исходных положений и данных. Будем исходить из того, что существует некоторая функция П, определяющая состояние частицы. От каких величин она может зависеть? В качестве минимального количества параметров мы принимаем координаты и время, а для несвободной частицы - ещё и константу взаимодействия: П( , , Δt). Время будем отсчитывать от некоторого начального значения tн, а координаты от некоторого начального значения :
Если отсчет времени и координат ведётся от tн=0 и , то Δt совпадает с t и Δr совпадает с . Рассмотрим более детально переменные и t. В произвольно выбранный начальный момент времени tн эти переменные независимы, поскольку начать измерение можно в любой точке прострaнcтва и в любой момент времени. В дальнейшем, в результате некоторого реального процесса, связанного с частицей, ее координаты изменятся на .
. (2)
Вследствие этих предположений независимыми параметрами, задающими состояние в произвольный момент времени, являются три величины: и Δt .
Рассмотрим процесс движения свободной частицы. Поскольку П - функция определяет состояние, то бесконечно малое изменение этого состояния определяется ее полным дифференциалом
. (3)
Введем обозначения:
(4)
(5)
функциональная производная:
. (6)
В этих обозначениях дифференциал функции состояния П запишется в виде
. (7)
Условиями того, что dП является полным дифференциалом, а и W явно от времени не зависят, то
(8)
(9)
. (10)
Если предположить независимость функции L от выбора начала отсчета координат , то отсюда следует сохранение вдоль траектории величин , которая носит название импульса и W, которая носит название энергии. Величина L является ничем иным, как функцией Лагранжа для свободной частицы.
Перейдем к рассмотрению случая, когда частица не свободна и взаимодействует с другой частицей, находящейся от нее на расстоянии . Будем считать, что П-функция аддитивно содержит функцию взаимодействия : . Предположим для простоты, что вторая частица покоится. Введем обозначения:
, , ,
, , . (11)
В этом случае формулы (8), (9), (10) сохраняют свой вид, но под W, , L величинами следует понимать обозначения (11). Пользуясь формулами векторного анализа аналогично [1], получаем:
. (12)
Уравнение (9) в случае независимости L от выбора начального момента времени и неподвижности второй частицы приводит к закону сохранения энергии в виде:
.
В частном случае, если принять , где заряд q является константой взаимодействия, вводим обозначения:
, , , . (13)
После несложных преобразований можем получить уравнение, выражающее силу, действующую на заряд со стороны электромагнитного поля:
. (14)
С учетом обозначений в случае взаимодействия уравнение (10) можно записать в виде , для электромагнитного поля , тогда
. (15)
Поскольку , у частицы возникает вращательное движение с мгновенной угловой скоростью , и ее импульс в этом случае запишется как , значит . Дальнейшие преобразования приводят нас к теореме Лармора:
. (16)
Мы видим, что основное уравнение механики, законы сохранения и теорема Лармора вместе наиболее полно отражают законы динамики. Мы видим, что связь энергии, импульса, координаты и времени во втором законе механики реализуется через функцию состояния.
Наш подход позволяет вывести и дать несколько другую тpaктовку фундаментальным динамическим принципам: наименьшего действия и калибровочной инвариантности. В частности, полагая tн=0 и rн=0 и интегрируя по промежутку времени от t1 до t2 получаем из (7) выражение
при фиксированных значениях t1 и t2 значение действия S не зависит от выбора траектории перехода .
Становится понятной уже в рамках классической физики происхождение принципа калибровочной инвариантности, по которому динамические величины и являются инвариантными относительно градиентных преобразований:
, . (17)
Легко убедиться в том, что эти преобразования есть следствие преобразования П-функции .
Развитый в работе принцип построения законов динамики не требует предварительного знания этих законов. Он показывает, что появление в теории таких динамических величин, как энергия, импульс с необходимостью следует из выбора прострaнcтвенно-временного способа описания событий. Введение заряда, как константы взаимодействия и как можно показать учёт симметрии взаимодействия автоматически приводит к уравнениям электродинамики.
Принцип наименьшего действия, как и принцип преобразования калибровки, является следствием и указанием на уже в рамках классической физики существование функции состояния.
СПИСОК ЛИТЕРАТУРЫ:
- Ландау Л.Д., Лифшиц Е.М. Теория поля. - М.: Наука, 1998.
Статья в формате PDF 112 KB...
18 09 2024 17:16:23
Статья в формате PDF 264 KB...
17 09 2024 17:14:49
Статья в формате PDF 119 KB...
16 09 2024 3:40:11
Статья в формате PDF 111 KB...
15 09 2024 18:41:14
Статья в формате PDF 138 KB...
14 09 2024 22:19:34
13 09 2024 10:57:16
Статья в формате PDF 132 KB...
12 09 2024 12:27:51
Статья в формате PDF 126 KB...
10 09 2024 0:53:18
В статье проанализирован опыт лечения больных острым аппендицитом за последние 10 лет. Из 1073 поступивших в приемное отделение, 229 больных отправлены в другие отделения, у 730 диагноз подтвержден и выполнена операция аппендэктомия. Гистологическое исследование отростков показало, что у 353 (48,4%) больных отросток был флегмонозный, у 87 (11,9%) – гангренозный, в том числе у 15 (2%) – гангренозно-перфоративный, у 290 (39,7%) – катаральный. Большой процент катаральных форм автор связывает с гипердиагностикой. 24 (3,2%) больных был диагностирован разлитой перитонит. В комплексном лечении больных наряду с антибактериальными средствами, последнее время широко стали применяться современные методики (дренирование брюшной полости силиконовыми трубками д 0,5-1,0 см, назогастральное дренирование, гемосорбция, УФО крови, химическая детоксикация гипохлоритом натрия). ппендикулярный инфильтрат был диагностирован у 14 (1,9%) больных. Тактика при этом осложнении была традиционной. У 35 (4,79%) больных развились послеоперационные осложнения: нагноение подкожно-жировой основы у 19 (2,66%), инфильтраты послеоперационного шва – у 9 (1,2%), гематомы подкожной клетчатки – у 7 (0,9%), в том числе у 7 (0,9%) больных с нагноением подкожно-жировой основы, развились дополнительно послеоперационные пневмонии. а эти годы серьезных полостных послеоперационных осложнений не отмечалось, также не было послеоперационной летальности. лучшение результатов лечения автор связывает с повышением профессионального роста врачей, продуманной взвешенной хирургической тактикой. Также имеет значение и возраст больных. У 88% он равнялся 1822 годам. При поступлении больные были физически крепкими и тренированными (военнослужащие), что позволило им значительно лучше справиться в послеоперационном периоде даже с перитонитом. ...
09 09 2024 23:37:28
Статья в формате PDF 763 KB...
08 09 2024 22:17:57
Статья в формате PDF 154 KB...
06 09 2024 13:15:40
Статья в формате PDF 108 KB...
05 09 2024 10:29:15
Статья в формате PDF 123 KB...
04 09 2024 7:11:39
Статья в формате PDF 105 KB...
03 09 2024 20:28:52
Статья в формате PDF 107 KB...
01 09 2024 18:24:35
Статья в формате PDF 255 KB...
31 08 2024 6:12:57
Статья в формате PDF 127 KB...
29 08 2024 21:59:56
Статья в формате PDF 143 KB...
27 08 2024 5:17:54
Статья в формате PDF 123 KB...
26 08 2024 8:12:10
Рассматривается возможность извлечения мелкого золота из золотосодержащего речного песка при проведении очистки фарватера р. Енисей (Тува) земснарядом с производительностью 250 м³/ час по исходным пескам, и убедительно показана целесообразность и экономическая выгода этого. ...
25 08 2024 1:31:45
Статья в формате PDF 115 KB...
24 08 2024 18:35:20
Статья в формате PDF 122 KB...
23 08 2024 6:21:21
Статья в формате PDF 259 KB...
22 08 2024 15:12:30
21 08 2024 10:31:46
Статья в формате PDF 100 KB...
20 08 2024 19:57:59
Статья в формате PDF 136 KB...
19 08 2024 4:26:13
Статья в формате PDF 275 KB...
18 08 2024 21:17:15
16 08 2024 13:44:41
Статья в формате PDF 296 KB...
15 08 2024 9:57:30
Астpaxaнская область является зоной эндемичной по мочекаменной болезни. За последние годы, по данным литературы, экологическое состояние области ухудшилось, назрела проблема загрязнения волжского водного бассейна. Анализ заболеваемости и распространенности мочекаменной болезни указывает на существенный рост данных показателей в период с 1991 по 2004 годы среди взрослого населения и подростков, особенно в Черноярском, Приволжском и Лиманском районах Астpaxaнской области. Выявленный рост заболеваемости мочекаменной болезни требует решения медико-социальных проблем и проблем, связанных с экологическим нeблагополучием области. ...
14 08 2024 6:45:26
Статья в формате PDF 199 KB...
12 08 2024 20:32:50
Статья в формате PDF 509 KB...
11 08 2024 1:48:26
Статья в формате PDF 263 KB...
10 08 2024 14:20:48
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::