ФОРМИРОВАНИЕ СТРУКТУРНОГО МОДУЛЯ ДЛЯ МОДУЛЯРНОГО ДИЗАЙНА В 3D ПРОСТРАНСТВЕ > Полезные советы
Тысяча полезных мелочей    

ФОРМИРОВАНИЕ СТРУКТУРНОГО МОДУЛЯ ДЛЯ МОДУЛЯРНОГО ДИЗАЙНА В 3D ПРОСТРАНСТВЕ

ФОРМИРОВАНИЕ СТРУКТУРНОГО МОДУЛЯ ДЛЯ МОДУЛЯРНОГО ДИЗАЙНА В 3D ПРОСТРАНСТВЕ

Иванов В.В. Таланов В.М. Обсуждается проблема формирования структурных модулей, которые предназначены для конструирования невырожденных модулярных 3D структур кристаллов. Статья в формате PDF 299 KB

Задача формирования структурного модуля с необходимыми геометрико-топологическими хаpaктеристиками является одной из значимых для конструирования невырожденных модулярных 3D структур кристаллов [1]. В соответствии с принципом модулярного строения кристаллов [2] для каждого структурного типа веществ может быть найден по определенному алгоритму набор базовых модулей, который является его диагностической модулярной хаpaктеристикой [3, 4]. Для модулярного дизайна может быть формально использован хаpaктеристический базовый модуль, соответствующий по составу одной формульной единице вещества. Однако с его помощью может быть сконструирована только вырожденная модулярная структура, т.к. его конфигурация и топология не допускает других позиционирований, отличных от упорядочения в модульной структуре анализируемого типа [4].

В общем случае модульное строение 3D трижды периодических структур кристаллов описывается следующим структурным кодом [5]:

R33{M(К, b) (G30)(||CP||)}[(LC33)(G33(z))],

где символ M означает базовый модуль (BM) или модуль, предназначенный для модулярного дизайна (MMD). Символ BM (G30) - состав базового модуля с указанием степени неизолированности b нецентральных атомов и его локальной симметрии G30, ||CP|| - матрица кодов прострaнcтвенной упаковки модулей, заданная одним из возможных способов, LC - решеточный комплекс, в соответствии с образом которого данные модули упакованы в элементарной ячейке структурного типа c симметрией G33, MMD(К, b) - состав не центросимметричного компактного и используемого для модулярного дизайна модуля с указанием его компактности К, степени неизолированности нецентральных атомов b и локальной симметрии. В случае модулярных структур используется символика S(LC)i - совокупность решеточных комплексов, в соответствии с которыми модули MMD и модульные блоки из них упакованы в ячейке i-й модулярной структуры с симметрией группы G33.

Возможность модулярного дизайна определяется комбинаторным варьированием кода упаковки (заданного матрицей ||CP||), а также изменениями состава и конфигурации модуля. Указанные процедуры приводят к получению представителей многообразия структур, производных от «материнского» структурного типа, и установлению соотношений между ними (политипных, гомологических, морфотропных). То, что указано в квадратных скобках, при вышеописанных изменениях служит дополнительной идентификационной информацией о строении конкретной модулярной структуры [5].

Рассмотрим некоторые подходы к формированию структурного модуля для последующего модулярного дизайна в структурированном 3D прострaнcтве.

Подход 1. Если прострaнcтво структурировано, т.е. известен структурный тип кристалла, то можно определить набор базовых модулей, в том числе и хаpaктеристический модуль. В этом случае рекомендуется использовать следующие способы формирования модуля для модулярного дизайна [2, 3].

Способ 1. Изменение закона упаковки базового модуля. Отметим, что главной причиной изменения закона упаковки базовых модулей является изменение симметрии окружения центрального атома в хаpaктеристическом модуле для структуры типа шпинели за счет «незначительных искажений» в относительном расположении этих модулей. В связи с этим соответствующие модулярные структуры описываются прострaнcтвенными группами, которые являются подгруппами группы Fd3m, и представляют собой возможные низкосимметричные модификации кубической шпинели с такой же ячейкой. Все эти модификации могут быть получены при фазовых переходах II рода или переходах I рода, близкого ко второму. Следует подчеркнуть, что даже при сохранении симметрии модуля превращения сопровождаются изменением его топологических хаpaктеристик - конфигурации и степени изолированности. Действительно, например, для модулей с симметрией 222, образующихся из «материнского» модуля A1(1)B12(1/6)X4(1) (с симметрией`43 m), имеем:

Таким образом, при целенаправленном изменении закона упаковки хаpaктеристического модуля может быть получено некоторое множество модулярных структур, которые являются полиморфными модификациями исходного структурного типа.

Способ 2. Целенаправленное изменение кристаллохимической топологии хаpaктеристического базового модуля. При сохранении закона упаковки изменение конфигурации хаpaктеристического базового модуля допускает два варианта изменения его степени изолированности: а) за счет целенаправленного уменьшения степени изолированности центрального атома и б) при целенаправленном увеличении степени изолированности координирующих атомов.

Для структурного типа шпинели закономерные изменения кристаллохимической топологии модулей по варианту (а) соответствуют следующей цепочке переходов:

A1(1)B12(1/6)X4(1) → A1(1)B8(1/4)X4(1) → → A1(1)B4(1/2)X4(1) → A1(1)B2(1)X4(1),

где предельный члeн - изолированный асимметричный модуль.

По варианту (б) изменения соответствуют другой цепочке переходов:

A1(1)B12(1/6)X4(1) → A1(1)B8(1/4)X4(1/2)X2(1) → → A1(1)B4(1/2)X8(1/2).

Здесь предельным члeном является неизолированный и достаточно компактный (K < 2) асимметричный модуль, который удовлетворяет требованиям, предъявляемым к модулям для модулярного дизайна. Он представляет собой достаточно компактное объединение AX4(1/2)-тетраэдра и B4(1/2)X4(1/2)-гексаэдра, с помощью которого может быть представлена структура типа шпинели.

Отметим, что асимметричные неизолированные модули, полученные в обоих вариантах, формально могут быть использованы для модулярного дизайна.

Способ 3. Теоретико-решеточный анализ закона упаковки вероятных асимметричных модулей для модулярного дизайна и определение их конфигурации.

Анализ основан на том, что для любой прострaнcтвенной группы все занятые решеточные комплексы в структурном типе могут быть в первом приближении представлены через один из решеточных инвариантов [6]. В случае, например, структурного типа шпинели состава АB2Х4 для занятых решеточных комплексов D, T и D4xxx формально имеем:

D = 0,0,0F + 1/4,1/4,1/4F, T = 5/8,5/8,5/8F + 7/8,5/8,7/8F + 5/8,7/8,7/8F + 7/8,7/8,5/8F,

D4xxx @ F2 = 7/8,7/8,7/8F + 1/8,1/8,7/8F + 7/8,1/8,1/8F + 1/8,7/8,1/8F +

+ 3/8,3/8,3/8F + 5/8,3/8,5/8F + 3/8,5/8,5/8F + 5/8,5/8,3/8F.

С учетом изменения базовых координат (левые верхние «индексы») первых трех F-комплексов T и последних четырех F-комплексов D4xxx для достижения компактности модуля наряду с комплексом 0,0,0F получим:

T = 1/8,1/8,5/8F + 7/8,1/8,3/8F + 1/8,7/8,3/8F + 7/8,7/8,5/8F,

D4xxx @ F2 = 7/8,7/8,7/8F + 1/8,1/8,7/8F + 7/8,1/8,1/8F + 1/8,7/8,1/8F +

+ 7/8,7/8,3/8F + 1/8,7/8,5/8F + 7/8,1/8,5/8F + 1/8,1/8,3/8F.

Базовые координаты полученных F-комплексов будем считать координатами для атомов A, B и X в изолированном и достаточно компактном асимметричном модуле A1(1)B2(1)X4(1) и производном от него неизолированном модуле A1(1)B4(1/2)X8(1/2). Аналогично соответствующие координаты атомов получим для комплекса 1/4,1/4,1/4F. Полученный неизолированный модуль A1(1)B4(1/2)X8(1/2) представляет собой достаточно компактное объединение AX4(1/2)-тетраэдра и B4(1/2)X4(1/2)-гексаэдра.

Таким образом, для каждого структурного типа по хаpaктеристическому решеточному комплексу может быть определен закон упаковки соответствующих базовых модулей, а также асимметричный неизолированный и более компактный, чем базовый, модуль, для которого упаковка по тому же закону соответствует некоторой модулярной структуре, генетически связанной с исходным структурным типом.

Подход 2. Более общий подход к формированию структурного модуля для модулярного дизайна применяется в отсутствии структурированного прострaнcтва. В этом случае можно использовать следующие способы.

Способ 1. Моделирование структурного типа кристаллов и формирование модуля для модулярного дизайна. Один из наиболее эффективных методов структурирования прострaнcтва основан на использовании базовых упаковок атомов с идентичной топологией окружения каждого атома. Геометрическим образом для базовых упаковок атомов может служить одна из 28 известных решеток, узлы которой образованы вершинами соответствующих компактно упакованных в прострaнcтве комбинаций правильных и полуправильных изогонов [6]. От базовых упаковок атомов с помощью преобразования Дирихле можно перейти к компактным упаковкам атомных многогранников Вороного. Центрами этих многогранников являются топологически эквивалентные вершины изогонов, вершинами - их геометрические центры [7].

Состав одноатомных модулярных ячеек может быть усложнен путем закономерного заполнения всех типов вершин многогранника атомами другого сорта. В результате этого может быть получено множество модулярных ячеек с многоатомными структурными фрагментами, описывающее соответствующее множество вырожденных модулярных структур. Эти структуры могут рассматриваться как один из вариантов модульного представления родственных структурных типов кристаллов с одинаковым хаpaктером упаковки модулей [2, 3]. Изменения конфигурации структурного модуля с помощью процедуры целенаправленного его модифицирования (одним из способов подхода 1) проводятся до получения такой его конфигурации и топологических хаpaктеристик, которые определяют возможность его использования для последующего модулярного дизайна [4].

Способ 2. Формирование ячеистого прострaнcтва с последующим многовариантным вложением в эквивалентные ячейки определенных структурных фрагментов. В этом случае можно использовать изогональные разбиения прострaнcтва на прострaнcтвенные ячейки с топологически эквивалентными узлами. Формирование ячеистого 3D прострaнcтва может быть основано на использовании изогонов одного типа, полностью заполняющих это прострaнcтво, например, призм {n44}, где n = 3, 4, 6. В результате изогонального разбиения прострaнcтва с помощью изогонов любой из 28 известных комбинаций и последующего преобразования Дирихле могут быть получены одинаковые модулярные ячейки в форме соответствующих атомных многогранников Вороного [6, 7], которые также обусловливают необходимое ячеистое 3D прострaнcтво. Вложение определенных структурных фрагментов в прострaнcтвенные ячейки проводится по определенной программе формирования ближнего и дальнего порядка будущей модулярной структуры, которая описывается с помощью эволюционной модели в виде ее генетического кода (см., например, [9]).

В рамках эволюционной модели символьное описание генетического кода структуры в общем случае можно представить следующим образом:

R33{G(M(К, b))}[T(S(LC)i)],

где G(M(К, b)) - описание генератора с помощью геометрических и топологических хаpaктеристик фрагмента М; T(S(LC)i)- топология взаимного позиционирования однотипных модулей, представленная как совокупность занятых ими решеточных комплексов S(LC)i.

В качестве основы для формирования локальной структуры для соответствующей группы модулярных структур может быть выбран структурный модуль M с определенной конфигурацией, симметрией G30 и топологией граничных элементов. ПроцеДypa первой стадии формирования локальной структуры определяется соответствующим законом трaнcкрипции T||i||,m:

Rloc = R30(Tim),

а процеДypa размножения данной локальной структуры в 3D прострaнcтве с образованием определенной модульной структуры R33 - эволюционным законом E||k||:

R33 = Rloc(Ek) = R33(Tim, Ek).

Символьное описание действия указанного выше закона трaнcкрипции может быть представлено в виде кода локальной структуры: Rloc = R30(Tim) = R30{M(G30)(||i||,m)}, а совместное действие законов трaнcкрипции и эволюции - в виде кода 3D трижды периодической модулярной структуры:

R33 = Rloc(Ek) = R33(Tim, Ek) =
= R33{M(G30)(||i||,m, ||k||)}[S(LC)i (G33(z))].

В данном описании структуры использованы несколько новых символов. Символ ||i|| - матрица индексов ветвления модуля М, которая определяется его конфигурацией и топологией, согласованной с формой ячеек структурированного 3D прострaнcтва. В случае полиэдрических ячеек возможные ветвления определяются количеством его вершин (iv), ребер (ir) и граней (ig), т.е. ||i|| = (iv, ir, ig). Символ m [0, 1, 2, ...] - целочисленный индекс, хаpaктеризующий размерный параметр локальной структуры и численно равный количеству модулей-звеньев между ядрами в ветвях структуры. В связи с этим относительное расстояние между ближайшими ядрами (период идентичности) в единицах размерного параметра модуля М в направлениях ветвлений равно (m + 1). Отметим, что при равномерном росте локальной структуры во всех направлениях данный параметр является постоянным и хаpaктеристическим параметром для определенной группы модулярных структур. Символ ||k|| - матрица индексов ветвления вторичных ядер, изоморфная матрице индексов ветвления ||i||. Условие равенства элементов матрицы ||k|| элементам матриц ||(i-1)||, ||(i-2)|| или ||(i-3)|| соответствует выполнению трaнcляционной процедуры в выбранном направлении.

Таким образом, проблема формирования структурного модуля, предназначенного для модулярного дизайна, может быть решена по-разному в зависимости от структурированности 3D прострaнcтва. Для структурированного прострaнcтва решение основано на использовании известного алгоритма выбора хаpaктеристического модуля с последующим его целенаправленным модифицированием несколькими способами. Для неструктурированного прострaнcтва необходимо предварительно использовать методы структурного моделирования или методы разбиения на прострaнcтвенные ячейки с последующим вложением в них определенных структурных фрагментов.

Список литературы

  1. Ferraris G., Makovicky E., Merlino S. Crystallography of modular structures. IUC Oxford Science Publications. - 2008. - 370 p.
  2. Иванов В.В., Таланов В.М. Принцип модулярного строения кристаллов // Кристаллография. - 2010. - Т.55, № 3. - С. 385-398.
  3. Иванов В.В., Таланов В.М. Алгоритм выбора структурного модуля и модулярный дизайн кристаллов // Журнал неорганической химии. - 2010. -Т.55, № 6. -С. 980-990.
  4. Иванов В.В. Комбинаторное моделирование вероятных структур неорганических веществ. - Ростов-на-Дону: Изд-во СКНЦ ВШ, 2003. - 204 с.
  5. Иванов В.В., Таланов В.М. Модулярное строение наноструктур: Информационные коды и комбинаторный дизайн // Наносистемы: Физика, Химия, Математика. - 2010. - Т.1, №1. - С. 72-107.
  6. Лорд Э.Э., Маккей А.Л., Ранганатан С. Новая геометрия для новых материалов. - М.: Физматлит, 2010. - 264 с.
  7. Урусов В.С. Теоретическая кристаллохимия. - М.: МГУ, 1987. - 276 с.
  8. Иванов В.В., Таланов В.М., Гусаров В.В. Информация и структура в наномире: модулярный дизайн двумерных наноструктур и фpaктальных решеток. Наносистемы: Физика, Химия, Математика. -2011. - Т.2, № 3. - С. 121-134.
  9. Иванов В.В., Шабельская Н.П., Таланов В.М., По- пов В.П. Итерационный модулярный дизайн двумерных наноструктур // Успехи современного естествознания. - 2012. - №2. - С. 60-63.


ВЫВОД УРАВНЕНИЙ МАКСВЕЛЛА ИЗ ФУНКЦИИ СОСТОЯНИЯ. ЗАРЯДОВАЯ ФУНКЦИЯ СОСТОЯНИЯ И ЕЁ СВЯЗЬ С ЗАКОНОМ СОХРАНЕНИЯ ЗАРЯДА

ВЫВОД УРАВНЕНИЙ МАКСВЕЛЛА ИЗ ФУНКЦИИ СОСТОЯНИЯ. ЗАРЯДОВАЯ ФУНКЦИЯ СОСТОЯНИЯ И ЕЁ СВЯЗЬ С ЗАКОНОМ СОХРАНЕНИЯ ЗАРЯДА На основе введённых функций состояния для электромагнитного поля и зарядовой функции состояния для частиц выведена полная система уравнений Максвелла для электродинамики. Показано, что закон сохранения зарядов есть следствие существования этой функции. Показано также, что в вакууме электромагнитное поле отсутствует, что подтверждает справедливость теории дальнодействия. ...

21 04 2024 11:38:59

УРАВНЕНИЯ ДЛЯ КООРДИНАЦИОННОГО ЧИСЛА В НЕУПОРЯДОЧЕНЫХ СИСТЕМАХ

УРАВНЕНИЯ ДЛЯ КООРДИНАЦИОННОГО ЧИСЛА В НЕУПОРЯДОЧЕНЫХ СИСТЕМАХ Приводится вывод уравнений для расчета координационного числа в неупорядоченных конденсированных системах: в зернистых материалах, в композитах с твердой монодисперсной фазой, в жидких металлах и при критическом состоянии вещества. В выводах этих уравнений используется основной их топологический параметр – средняя плотность упаковки структурных элементов дискретности. Знание координационного числа элементов дискретности неупорядоченных систем необходимо для определения многих их свойств: физических, механических, реологических и др., совокупность которых вытекает из их топологических состояний: твердого, псевдотвердого, жидкого, псевдожидкого и критического. ...

19 04 2024 21:22:36

АНОРОГЕННЫЕ ГРАНИТОИДЫ АБАЙСКОГО МАССИВА ГОРНОГО АЛТАЯ: ПЕТРОЛОГИЯ И ГЕОХИМИЯ

АНОРОГЕННЫЕ ГРАНИТОИДЫ АБАЙСКОГО МАССИВА ГОРНОГО АЛТАЯ: ПЕТРОЛОГИЯ И ГЕОХИМИЯ В статье приведены спopные данные предшественников по составу и особенностям становления гранитоидов Абайского массива среднего девона. Новые данные, полученные авторами по петрологии и геохимии, позволяют отнести гранитоиды массива к анорогенному типу (А-тип) с щелочными минералами (рибекитом, астрофиллитом). Формирование массива протекало в три фазы: 1 – гранодиориты; 2 – граниты, умеренно-щелочные рибекитовые граниты; 3 – лейкограниты и лейкогранит-порфиры. Генерация их происходила в постколлизионной обстановке, инициированной плюмтектоникой. В северо-западной части массива в районе пологого погружения кровли, осложнённой куполовидным поднятием, зафиксировано аномальное обогащение флюидной магматогенной фазы летучими компонентами, и особенно фтором, что указывает на возможность обнаружения здесь редкометалльно-редкоземельного оруденения. ...

16 04 2024 16:59:26

ПОЛОВЫЕ РАЗЛИЧИЯ В РАЗВИТИИ ТКАНЕВОГО ВОСПАЛЕНИЯ И ИХ СВЯЗЬ С УРОВНЕМ ОКСИДА АЗОТА ПРИ ДЛИТЕЛЬНОМ ВОЗДЕЙСТВИИ ТАБАЧНОГО ДЫМА

ПОЛОВЫЕ РАЗЛИЧИЯ В РАЗВИТИИ ТКАНЕВОГО ВОСПАЛЕНИЯ И ИХ СВЯЗЬ С УРОВНЕМ ОКСИДА АЗОТА ПРИ ДЛИТЕЛЬНОМ ВОЗДЕЙСТВИИ ТАБАЧНОГО ДЫМА Исследования проведены на 128 пoлoвoзрелых крысах различного пола, содержавшихся в «курительных камерах» в течение 60 дней с ежедневной затравкой животных в течение 1 часа. Определяли содержание нитратов и нитритов в тканях легких, мозга и печени на 30, 45 и 60 сутки. Мы предполагали выяснить пoлoвые особенности роли оксида азота в гомогенатах тканей крыс различного пола, подвергшихся воздействию табачного дыма. Как показало настоящее исследование, длительная интоксикация табачным дымом приводит к выраженному развитию воспалительных явлений в изучаемых органах, более выраженное в тканях легких и печени, особенно у самцов. В генезе выявленных морфологических и морфометрических изменений в исследуемых тканях лежит активизация индуцибельной формы оксида азота, что приводит к прогрессированию воспалительных и оксидативных явлений. Выявлен пoлoвoй диморфизм в регуляции уровня оксида азота. ...

12 04 2024 5:47:19

МЕХАНИЗМЫ РЕАЛИЗАЦИИ РАЗЛИЧНЫХ МЕТОДИК САМОУПРАВЛЕНИЯ С БИОЛОГИЧЕСКОЙ ОБРАТНОЙ СВЯЗЬЮ

МЕХАНИЗМЫ РЕАЛИЗАЦИИ РАЗЛИЧНЫХ МЕТОДИК САМОУПРАВЛЕНИЯ С БИОЛОГИЧЕСКОЙ ОБРАТНОЙ СВЯЗЬЮ Проводился анализ изменений биоэлектрической активности головного мозга и сверхмедленной активности в нервной, дыхательной и сердечно-сосудистой системах в процессе адаптивного биоуправления с биологической обратной связью по параметрам церебральной гемодинамики и медитации. Осуществлялась регистрация сверхмедленной активности нервной и сердечно-сосудистой систем и локализация биоэлектрической активности нервной системы. Выявлено вовлечение различных мозговых структур в реализацию поведенческих стратегий в группах обучившихся различным видам самоуправления, что говорит о различии механизмов достижения конечного результата. Полученные результаты свидетельствуют о вовлечении кардиореспираторной синхронизации в изменение биоэлектрической активности только при релаксации с помощью адаптивного биоуправления. Осуществлена проверка резонансной гипотезы релаксации, согласно которой при совпадении частот изменения дыхания, биоэлектрической активности мозга, сердечного ритма и сосудистого тонуса происходит усиление активности в вовлекаемых в резонансный ответ структурах. ...

10 04 2024 10:27:27

ЛЕЧЕНИЕ БОЛЬНЫХ С ТЯЖЕЛОЙ ТРАВМОЙ

ЛЕЧЕНИЕ БОЛЬНЫХ С ТЯЖЕЛОЙ ТРАВМОЙ Статья в формате PDF 283 KB...

05 04 2024 6:54:22

РЕГЕНЕРАЦИЯ ЧЕЛОВЕКА – РЕАЛЬНОСТЬ НАШИХ ДНЕЙ

РЕГЕНЕРАЦИЯ ЧЕЛОВЕКА – РЕАЛЬНОСТЬ НАШИХ ДНЕЙ В работе приводится краткий обзор достижений регенеративной медицины. Что представляет из себя регенеративная медицина, насколько реально применение ее разработок в нашей жизни? Как скоро мы сможем воспользоваться ими? На эти и другие вопросы сделана попытка ответить в данной работе. ...

04 04 2024 19:55:35

КОМПЬЮТЕРИЗАЦИЯ УЧЕБНОГО ПРОЦЕССА В ВЫСШЕЙ ШКОЛЕ

КОМПЬЮТЕРИЗАЦИЯ УЧЕБНОГО ПРОЦЕССА В ВЫСШЕЙ ШКОЛЕ Статья в формате PDF 153 KB...

03 04 2024 6:10:40

СОРТИМЕНТНО-СТОИМОСТНОЕ РАСПРЕДЕЛЕНИЕ ДЕРЕВЬЕВ НА ПРОБНОЙ ПЛОЩАДИ РАЗНОВОЗРАСТНОГО СОСНЯКА

СОРТИМЕНТНО-СТОИМОСТНОЕ РАСПРЕДЕЛЕНИЕ ДЕРЕВЬЕВ НА ПРОБНОЙ ПЛОЩАДИ РАЗНОВОЗРАСТНОГО СОСНЯКА Способ глазомерного учета выхода сортиментов из деревьев лесного древостоя широко применялся в дореволюционное время под названием коммерческая таксация. Исходя из биотехнического принципа в лесной экономике показана возможность выполнения коммерческой таксации древостоя моделированием стоимостных и возрастных распределений лесных деревьев по текущим рыночным ценам на круглые лесоматериалы. ...

25 03 2024 16:39:10

РОЛЬ РЕЧИ В ФОРМИРОВАНИИ ХАРАКТЕРА ЛИЧНОСТИ И ДЕЯТЕЛЬНОСТИ

РОЛЬ РЕЧИ В ФОРМИРОВАНИИ ХАРАКТЕРА ЛИЧНОСТИ И ДЕЯТЕЛЬНОСТИ В работе дан теоретический анализ понятия «личности», способы её формирования в результате пpaктической деятельности человека. Показано, что речь – необходимое условие социального, культурного воспроизводства личности, формирования его специфических социальных способностей. ...

19 03 2024 15:57:44

НАЧЕВА ЛЮБОВЬ ВАСИЛЬЕВНА

НАЧЕВА ЛЮБОВЬ ВАСИЛЬЕВНА Статья в формате PDF 114 KB...

18 03 2024 0:32:25

МЕЛАМИН ВОЛОС И ЗДОРОВЬЕ

МЕЛАМИН ВОЛОС И ЗДОРОВЬЕ Статья в формате PDF 132 KB...

17 03 2024 22:27:16

ФИЛОСОФСКИЕ ОСНОВАНИЯ ОБЩЕЙ ТЕОРИИ ПАТОЛОГИИ: ПРИНЦИП ПОДОБИЯ

ФИЛОСОФСКИЕ ОСНОВАНИЯ ОБЩЕЙ ТЕОРИИ ПАТОЛОГИИ: ПРИНЦИП ПОДОБИЯ В основе современной научной теории патологии должны лежать фундаментальные философские принципы бытия материи, из которых выводятся и обосновываются ее основные положения. В данной работе проведен анализ принципа подобия как частного выражения философского принципа субстанциального единства мира. Делается вывод, что один общий биологический процесс лежит в основе как нормальных, так и патологических явлений: приспособление есть сущность болезни. ...

16 03 2024 9:57:36

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::