ПАРАМЕТР АСИММЕТРИИ ЗОНТООБРАЗНОГО ТЕЛА
Настоящая работа имеет самое прямое отношение к проблеме создания так называемого вибрационного летательного аппарата. Это устройство представляет собой несимметричный корпус W, относительно которого совершает незатухающие, не обязательно гармонические, рабочее тело B (рисунок 1) [1,5].
Рисунок 1. Схема вибрационного летательного аппарата.
Качественно, если масса корпуса много меньше массы рабочего тела, подъемную силу F такого устройства можно оценить по формуле
, (1)
где a и T - амплитуда и период колебаний, соответственно, S -площадь сечения корпуса, r - плотность среды, cx - коэффициент аэродинамического сопротивления, соответствующий движению корпуса вниз, d - параметр асимметрии корпуса, представляющий собой, по существу, отношение величины cx к коэффициенту сопротивления, соответствующего движению корпуса вверх. Совершенно очевидно, что для увеличения подъемной силы необходим выбор параметров корпуса с максимально возможными значениями коэффициента сопротивления и параметра асимметрии. Это же требование вытекает и из строгого расчета [2]. Считается, что даже для полусферы параметр асимметрии составляет величину не менее 5 [6]. Это, впрочем, относится только к достаточно большим скоростям движения зонтообразного тела относительно среды и к статическому режиму, когда скорость воздуха относительно тела во время измерений остается неизменной. Первые серьезные испытания вибрационного способа полета оказались неудачными [3]. Одной из причин этого, как выяснилось, является низкое значение параметров асимметрии зонтообразных тел. Поэтому, измерение параметров асимметрии зонтообразных тел достаточно актуально для разработки и прогнозирования параметров вибрационного летательного аппарата.
Измерения силы сопротивления в аэродинамической трубе сложны, дорогостоящи и неоднозначны [4]. А для данной задачи вообще достаточно воспользоваться методом, основанным на точном измерении времени падения тела в среде с сопротивлением.
На рисунке 2 показаны результаты измерения времени падения t тонких лавсановых конусов с высоты h=0,67м для трех значений отношения площади боковой поверхности конуса SC к площади основания S.
Рисунок 2. Зависимости времени падения конусообразных тел от отношения площади сечения к массе при различных площадях боковой поверхности SC. Точки - экспериментальные результаты, кривые - решение уравнения (2).
Точность измерения интервала времени составила величину не хуже 0,02с. Такой способ представления экспериментальных результатов выбран не случайно. Дело в том, что при квадратичном сопротивлении зависимость времени падения от массы тела m и площади сечения S определяется решением уравнения
, (2)
где r - плотность воздуха, g -ускорение свободного падения. Отсюда следует, что при фиксированном значении высоты время падения должно зависеть только от отношения S/m. В измерениях участвовали тонкие лавсановые конусы, падающие как острием вверх, так и вниз. Представленные на рисунке 2 результаты соответствуют изменениям площадей сечения тел более чем в 5 раз, масс - в 10 раз. При этом минимальное значение площади равнялось 0,02м2, а минимальная масса падающего тела - 0,02кг.
Следует обратить внимание на следующее обстоятельство. Падение всех конусов острием вниз происходит примерно с одним и тем же коэффициентом сопротивления. Его среднее значение - сx=2,7±0,3. Следующий факт: это значение незначительно отличается от коэффициентов сопротивления, соответствующих падению конусов острием вниз. Другими словами, даже при двукратном превышении площади боковой поверхности над площадью основания конуса параметр асимметрии составляет величину всего лишь 1,75. Коэффициенты сопротивления определялись из условия наилучшего соответствия зависимости t(S/m) полученным экспериментальным данным. Зависимость параметра асимметрии d от отношения площадей показана на рисунке 3.
Рисунок 3. Параметры асимметрии конусообразных тел. Точки - экспериментальные результаты, сплошная кривая - зависимость (3).
Приближенно параметры асимметрии могут быть описаны выражением
, (3)
где b=0,65.
Это далеко не все, что можно извлечь из экспериментальных значений коэффициентов аэродинамического сопротивления. Например, можно определить оптимальный размер конусообразного корпуса вибрационного летательного аппарата. Действительно, подстановка полученного выражения (3) в (1) дает
и позволяет определить оптимальное отношение S/SС. Здесь f=2T2F/p2a2cxrSC и представляет собой приведенную подъемную силу вибрационного летательного аппарата. Фиксированное значение площади боковой поверхности корпуса означает фиксированное значение массы вибрационного летательного аппарата. Поэтому имеет смысл рассмотреть зависимость приведенной подъемной силы от отношения площадей S/SС. Такая зависимость показана на рисунке 4 и демонстрирует, что приведенная подъемная сила максимальна при S/SС ≈ 2/3. При этом параметр асимметрии составляет d ≈1,5, причем f ≈ 0,2.
Рисунок 4. Зависимость приведенной подъемной силы f от отношения площади сечения к площади боковой поверхности конусообразного корпуса вибрационного летательного аппарата.
Например, при a=0,1м, T=0,1c и S=1м2 подъемная сила должна в лучшем случае составлять величину F≈5,2Н. Разумеется, это -завышенное значение. Однако теперь становится понятным, расчет критического режима вибрационного полета для больших параметров асимметрии [2] лишен смысла. Едва ли параметр асимметрии может составить величину больше 3. Попытки увеличить это число ведут к неоправданному утяжелению системы.
СПИСОК ЛИТЕРАТУРЫ
- Герасимов С.А. //Прикл. мех. и техн. физ. 2003. Т. 44. № 6. С. 44-48.
- Герасимов С.А., Удалова Е.С. //Техника и технология. 2005. № 1. С. 17-20.
- Герасимов С.А. //Естеств. и техн. науки. 2005. № 6. С. 128-132.
- Горлин С.М., Слезингер И.И. Аэромеханические измерения. - М.: Наука, 1964. - 720 с.
- Нагаев Р.Ф., Тамм Е.А. //Машиноведение. 1980. № 4. С. 3-8.
- Стрелков С.П. Механика. - М. Наука, 1975. - 560 с.
Статья в формате PDF
117 KB...
04 07 2022 16:33:34
Статья в формате PDF
120 KB...
02 07 2022 3:56:37
Статья в формате PDF
206 KB...
29 06 2022 13:15:34
Статья в формате PDF
134 KB...
28 06 2022 20:15:20
27 06 2022 15:30:41
Статья в формате PDF
227 KB...
26 06 2022 5:39:33
Статья в формате PDF
134 KB...
25 06 2022 3:52:35
Статья в формате PDF
135 KB...
24 06 2022 18:29:20
Статья в формате PDF
416 KB...
23 06 2022 9:14:37
Статья в формате PDF
119 KB...
22 06 2022 14:39:37
Статья в формате PDF
700 KB...
21 06 2022 15:33:43
Статья в формате PDF
100 KB...
20 06 2022 8:47:18
Статья в формате PDF
125 KB...
18 06 2022 10:29:44
Статья в формате PDF
245 KB...
17 06 2022 22:12:10
Статья в формате PDF
163 KB...
16 06 2022 6:52:31
Статья в формате PDF
107 KB...
15 06 2022 23:58:58
Проведен анализ эффективности курсового гетеросуггестивного воздействия на функциональное состояние ЦНС у женщин репродуктивного возраста. С помощью методов электроэнцефалографии и спектрального анализа вариабельности сердечного ритма получены достоверные данные о положительной динамике на центральном и вегетативном уровнях обеспечения психофизиологической устойчивости обследованных женщин.
...
14 06 2022 7:22:29
Статья в формате PDF
122 KB...
13 06 2022 3:25:51
Статья в формате PDF
112 KB...
12 06 2022 17:46:50
Статья в формате PDF
124 KB...
11 06 2022 13:35:46
Статья в формате PDF
109 KB...
10 06 2022 22:29:46
Статья в формате PDF
221 KB...
09 06 2022 18:11:28
Статья в формате PDF
216 KB...
06 06 2022 19:57:19
Статья в формате PDF
103 KB...
05 06 2022 0:32:31
Статья в формате PDF
297 KB...
04 06 2022 13:51:40
Статья в формате PDF
245 KB...
03 06 2022 8:48:21
Статья в формате PDF
117 KB...
02 06 2022 17:59:52
Статья в формате PDF
267 KB...
01 06 2022 7:48:11
Статья в формате PDF
120 KB...
31 05 2022 17:43:40
В эксперименте в сравнительном плане, изучено влияние радиационного облучения, ртутной интоксикации и гипотиреоза на систему иммунитета, на активность ферментов обмена пуриновых нуклеотидов: 5’-нуклеотидазы, АМФ-дезаминазы и аденозиндезаминазы, на активность ферментов антиоксидантной системы: супероксиддисмутазы (СОД), глутатионпероксидазы (ГПО), глутатионредуктазы в ткани печени, почек и в сыворотке крови. Установлены значительные сходства в механизме клеточных и метаболических эффектов радиации, гипотиреоза, ртутной интоксикации. Независимо от ткани и воздействующего на организм фактора (радиация, гипотиреоз, ртутная интоксикация) имеет место однотипные изменения активности супероксиддисмутазы, глутатионпероксидазы и глутатионредуктазы, что свидетельствует о том, что указанные воздействия являются стрессорными. Изменения в иммунной системе, обнаруженные при ионизирующем излучении, пpaктически однотипны изменениям иммунитета при гипотиреозе. При ртутной интоксикации в отличие от гипотиреоза и радиации имеет место снижение уровня В-лимфоцитов, что в какой-то мере объясняется особенностями эффектов ртутной интоксикации на систему иммунитета и ферменты метаболизма пуриновых нуклеотидов. В определенной степени эти различия можно объяснить разной степенью становления защитных механизмов и степенью целостности регуляторной функции адрено-тиреоидной системы.
...
30 05 2022 20:57:17
Статья в формате PDF
109 KB...
28 05 2022 14:55:55
Статья в формате PDF
108 KB...
27 05 2022 14:57:18
Статья в формате PDF
317 KB...
26 05 2022 6:21:14
25 05 2022 21:21:45
Статья в формате PDF
133 KB...
24 05 2022 6:34:54
Статья в формате PDF
106 KB...
22 05 2022 11:11:34
Статья в формате PDF 251 KB...
21 05 2022 18:52:40
Статья в формате PDF
107 KB...
20 05 2022 7:19:30
Использование массажа позволяет в короткие сроки преодолеть имеющиеся нарушения тонуса артикуляционной мускулатуры. Нормальные образцы движений могут быть выработаны только на базе физиологического мышечного тонуса.
...
19 05 2022 18:38:13
Статья в формате PDF
119 KB...
18 05 2022 23:23:41
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::