ПРОГРАММНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ ИССЛЕДОВАНИЯ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК ПЕРСПЕКТИВНЫХ ТЕПЛОТЕХНИЧЕСКИХ МАТЕРИАЛОВ
Для успешного решения задач выбора оптимальных параметров различных теплонагруженных систем важнейшим условием является использование обоснованных математических моделей различного уровня детализации, позволяющих с требуемой точностью прогнозировать состояние системы на различных стадиях функционирования. Для построения таких моделей перспективным представляется комплексный подход на основе экспериментальных исследований в сочетании с эффективными методами диагностики тепловых процессов и идентификации математических моделей теплообмена по результатам испытаний. В основу этих методов могут быть положены решения обратных задач теплообмена, а в ряде случаев обратные задачи являются пpaктически единственным средством получения необходимых результатов. Из всего комплекса проблем, возникающих и требующих своего решения при разработке надежных математических моделей, в предлагаемой работе анализируется проблема разработки и создания учебно-исследовательского метрологического комплекса для обеспечения проведения тепловых экспериментов применительно к исследованию процессов теплообмена методами обратных задач. Сложность используемых математических моделей, высокая стоимость экспериментальных исследований, а также известные недостатки традиционных методов обработки и анализа данных делают актуальной проблему создания нового комплекса алгоритмов для извлечения максимального количества информации об анализируемой системе и ее хаpaктеристиках с использованием экспериментальных данных, обеспечения максимальной достоверности получаемых результатов и снижения необходимого объема экспериментальных работ.
В работе рассматриваются основные принципы и структура проблемно-ориентированного комплекса программ, предназначенного для решения линейных и нелинейных некорректных обратных задач нестационарной теплопроводности в одномерной по прострaнcтвенной координате формулировке. Реализованные в программном комплексе вычислительные алгоритмы решения обратных задач построены с применением метода итерационной регуляризации. Данный метод основан на минимизации градиентными методами первого порядка функционала невязки, представляющего собой среднеквадратичное уклонение экспериментально измеренных температур от значений, расчитанных с использованием математической модели. Параметром регуляризации является номер последней итерации, определяемый из условия согласования величины функционала невязки с погрешностью измерений. Основной особенностью итерационных регуляризирующих алгоритмов является одинаковая последовательность вычислительных операций при решении обратных задач различных типов. В реализованных в комплексе вычислительных алгоритмax использовалась обобщенная математическая модель состояния в форме системы не связанных между собой краевых задач для общего нелинейного уравнения в частных производных параболического типа в многослойной прострaнcтвенной области. Начальные, граничные условия и условия энергетического сопряжения между слоями также имеют обобщенную форму. Численное решение обобщенной модели состояния осуществляется методом конечных разностей. В качестве искомых хаpaктеристик, определяемых из решения обратной задачи, могут фигурировать постоянные параметры, функциональные зависимости и их произвольная комбинация. Аргументами функций могут быть время, прострaнcтвенная координата или температура. Разработанные алгоритмы позволяют учесть два типа имеющейся априорной информации об искомых хаpaктеристик: положительность (или не отрицательность); принадлежность к определенному прострaнcтву (учет гладкости).
Программный комплекс имеет многоуровневую модульную иерархическую структуру. Отдельные модули объединены в в сегменты. За счет формального представления исходных данных и организации информационных связей между модулями выделена совокупность универсальных модулей и сформирован проблемно-независимый сегмент. В этом сегменте в общем виде реализованы итерационные алгоритмы решения обратных задач, используя лишь коэффициенты обобщенной математической модели. Конкретизация частной обратной задачи осуществляется при вычислении значений коэффициентов обобщенной модели. Группа модулей, в которых реализованы стандартные математические операции, такие как аппроксимация функций, операции с матрицами, интерполяция и другие также объединены в проблемно-независимый сегмент.
Статья в формате PDF 266 KB...
15 09 2024 6:51:43
Статья в формате PDF 170 KB...
14 09 2024 12:13:44
Статья в формате PDF 120 KB...
12 09 2024 8:31:16
Статья в формате PDF 789 KB...
11 09 2024 16:40:48
Статья в формате PDF 154 KB...
10 09 2024 15:30:10
Статья в формате PDF 275 KB...
09 09 2024 2:26:38
Статья в формате PDF 700 KB...
08 09 2024 11:24:52
Статья в формате PDF 110 KB...
07 09 2024 14:57:35
Статья в формате PDF 314 KB...
06 09 2024 15:17:18
На материале 769 клинических наблюдений проведен анализ причин возникновения острого панкреатита после эндоскопической папиллотомии. Установлено, что основой их развития является прямое повреждение главного протока поджелудочной железы. Разработаны способы профилактики постманипуляционных панкреатитов. ...
05 09 2024 15:42:42
Статья в формате PDF 191 KB...
02 09 2024 7:18:55
Статья в формате PDF 114 KB...
01 09 2024 3:13:34
Статья в формате PDF 109 KB...
30 08 2024 20:36:52
Статья в формате PDF 447 KB...
28 08 2024 16:59:30
Статья в формате PDF 130 KB...
27 08 2024 4:52:48
Статья в формате PDF 126 KB...
26 08 2024 1:40:11
Статья в формате PDF 285 KB...
25 08 2024 12:21:51
Статья в формате PDF 301 KB...
23 08 2024 17:46:38
Статья в формате PDF 1463 KB...
21 08 2024 8:53:54
Статья в формате PDF 131 KB...
19 08 2024 15:32:29
Статья в формате PDF 101 KB...
18 08 2024 4:59:59
Статья в формате PDF 141 KB...
17 08 2024 22:51:49
Статья в формате PDF 110 KB...
16 08 2024 23:16:57
Статья в формате PDF 126 KB...
15 08 2024 8:41:32
Статья в формате PDF 127 KB...
14 08 2024 3:44:54
Статья в формате PDF 114 KB...
13 08 2024 1:40:22
Статья в формате PDF 127 KB...
12 08 2024 1:11:55
Статья в формате PDF 238 KB...
11 08 2024 18:19:44
Статья в формате PDF 106 KB...
10 08 2024 11:57:55
Статья в формате PDF 253 KB...
09 08 2024 18:15:48
Статья в формате PDF 118 KB...
08 08 2024 8:39:42
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::