КОНКУРЕНЦИЯ В УСЛОВИЯХ ДУОПОЛИИ С ТОЧКИ ЗРЕНИЯ ТЕОРИИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ > Полезные советы
Тысяча полезных мелочей    

КОНКУРЕНЦИЯ В УСЛОВИЯХ ДУОПОЛИИ С ТОЧКИ ЗРЕНИЯ ТЕОРИИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

КОНКУРЕНЦИЯ В УСЛОВИЯХ ДУОПОЛИИ С ТОЧКИ ЗРЕНИЯ ТЕОРИИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

Просвиров А.Э. Музюкова Е.В. Рассмотрена экономико-математическая модель конкуренции двух фирм на однородном рынке сбыта с точки зрения теории оптимального управления. Приводится формулировка соответствующей задачи отыскания программного управления, минимизирующего суммарные издержи предприятия, необходимые для достижения заданной рыночной доли на дуополистическом рынке. Дана экономическая интерпретация полученных результатов. Статья в формате PDF 128 KB

Математическому моделированию процессов конкуренции и сотрудничества двух фирм на различных рынках посвящено довольно много научных работ, в основном использующих аппарат теории игр и статистических решений. В качестве примера можно привести работы таких исследователей, как Курно, Стакельберг, Бертран, Нэш, Парето, основные результаты которых приведены в [1-2,5].

В настоящей работе авторами предпринята попытка математического моделирования конкурентной борьбы с точки зрения экономической динамики с привлечением аппарата теории оптимального управления.

Изменение объемов продаж конкурирующих фирм с течением времени может быть описано следующей системой дифференциальных уравнений [4]:

                   (1)

с начальными условиями . (2)

Здесь и далее использованы следующие обозначения:

q1(t) - объем продаж фирмы I;

q2(t) - объем продаж фирмы II;

N - объем рассматриваемого сегмента рынка сбыта;

a1, b1, a2,b2 -положительные коэффициенты, хаpaктеризующие степень влияния различных факторов на изменения объема продаж первой и второй фирмы соответственно [4].

Замена переменных , , ; , ,  приводит исходную задачу Коши к безразмерному виду:


                 (3)

Функция  хаpaктеризует степень воздействия внутренней среды первого предприятия на рост объемов продаж по отношению к аналогичной величине конкурента.

Неизбежно возникает вопрос о минимизации управленческого воздействия  первого предприятия, необходимые для достижения к известному моменту времени T заранее запланированной рыночной доли , ответ на который может быть, по мнению авторов, получен из решения следующей задачи оптимального управления, которая и является предметом исследования данной работы: найти такое программное управление , которое доставляет минимум целевому функционалу

,                    (4)

удовлетворяет системе дифференциальных уравнений с граничными условиями (3) и ограничениями на состояние системы и управление:

, , ,

, , где .           (5)

Здесь - желаемая рыночная доля первого предприятия в этот же момент времени, а значение выбиралось из следующих соображений: пусть предприятие для достижения поставленной цели располагает ресурсами Q, а величина  может тpaктоваться как скорость расходования ресурсов предприятия. Следовательно, . Следует, однако, отметить, что это далеко не единственный способ выбора этой величины.

Алгоритм численного решения задачи (4)-(5) основан на отмеченной рядом исследователей [5] глубокой связью между задачами оптимального управления и математического программирования. С этой точкой зрения задача оптимального управления для непрерывной системы образует бесконечномерную задачу математического программирования в бесконечномерном прострaнcтве. Основным достоинством данного подхода является возможность применения хорошо развитого аппарата численного решения задач математического программирования к теории оптимального управления.

Следуя указанному подходу [5], переформулируем задачу в дискретной форме. Временной интервал   разбивается на n равных временных интервалов, целевой функционал (4) заменяется интегральном суммой, а задача Коши (3) -конечно-разностной аппроксимацией, основанной на интерполяционных уравнениях Адамса [5]. 

В результате получаем задачу нелинейного программирования, в которой целевому функционалу соответствует целевая функция, а уравнение состояния превращается в 2n ограничений в форме равенств.

Ограничения на состояние системы и управления трaнcформируются в ограничения в форме неравенств задачи математического программирования:

                               (6)

,

 ,

()

; ; ; ; ;

; .                (7)

Здесь:

; ; .

Задача решалась численно с помощью надстройки «Поиск решения» пакета Microsoft Office Excel 2003 по встроенному алгоритму нелинейной оптимизации Generalized Reduced Gradient (GRG2), разработанному Леоном Ласдоном (Leon Lasdon, University of Texas at Austin) и Аланом Уореном (Allan Waren, Cleveland State University).

В результате в каждой точке находились , y1(i), y2(i), а также значения целевого функционала J.

Точность полученного решения оценивалась «апостериори» путем подстановки найденного программного управления u=u(t)  в (3) с последующим численным интегрированием системы ОДУ методом Рунге-Кутта четвертого порядка [3].

Некоторые результаты численных расчетов приведены на рис.1-3. При построении графиков использовались следующие значения параметров модели: ; n=20; ; ; .

Значение T варьировалось в пределах от 2 до 3.

Анализ рис. 1 позволяет сделать вывод об адекватности построенной математической модели и достаточной точности аппроксимации исходной задачи оптимального управления (3)-(5) задачей нелинейного программирования (6)-(7).

Об этом свидетельствует тот факт, что непрерывные кривые, построенные по результатам численного интегрирования задачи Коши (3) пpaктически совпадают с точками, соответствующими решению конечно-разностной задаче нелинейного программирования.

Рис. 2 указывает на то, что во всех случаях поведение оптимального программного управления  обнаруживает следующую хаpaктерную особенность: до определенного момента времени   , после чего резко падает до нуля. По результатам численных экспериментов .

Рис.1. Оптимальная динамика объема продаж фирмы I и фирмы II  для T=3. Сплошные линии соответствуют результатам контрольного интегрирования методом Рунге-Кутта.

Рис.2. Зависимость оптимального управления  от времени для случаев T=2,0 (кривая 1), T=2,5 (кривая 2), T=3,0 (кривая 3). Выделенные ресурсы Q=10,0.

Рис.3. Зависимость оптимального значения целевого функционала J от ресурсов Q для  T=2.

Это позволяет сделать пpaктически важный вывод о том, что оптимальная стратегия предприятия по достижению желаемой рыночной доли в условиях дуополии заключается в приложении максимальных усилий именно на начальном участке, после чего, начиная с момента времени  , можно значительно уменьшить интенсивность расхода ресурсов.

Зависимость оптимального значения целевого функционала J, от выделенных ресурсов Q представлена на рис. 3. Убывающий хаpaктер этой зависимости объясняется тем, что с увеличением Q возрастает , а значит, и интенсивность использования ресурсов на начальном, «стартовом» участке траектории динамической системы. А поскольку именно этот участок является наиболее важным с точки зрения достижения желаемого результата,  в конечном итоге это приводит к интегральному эффекту экономии ресурсов.

СПИСОК ЛИТЕРАТУРЫ:

  1. Бережной Л.И. Теория оптимального управления экономическими системами: Учебное пособие. - СПб.: ИВЭСЭП, Знание,2002. 64 с.
  2. Ванько В.И., Ермошина О.В., Кувыркин Г.Н. Вариационное исчисление и оптимальное управление: Учеб. для вузов. 2-е изд./ Под ред. В.С. Зарубина, А.П. Крищенко.-М.: Изд-во МГТУ им. Баумана, 2001. 488 с.
  3. Мудров А.Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. Томск: МП «Раско», 1991. 272 с. ил.
  4. Просвиров А.Э. Копылов А.В., Динамическая модель конкуренции двух фирм на однородном рынке // Успехи современного естествознания, №8, 2003. стр. 29-33.
  5. Табак Д., Куо Б. Оптимальное управление и математическое программирование, перев. с англ. М., Наука, 1975. 280 с.


О ТЕОРИИ ИЗОБРАЗИТЕЛЬНОГО ИСКУССТВА

О ТЕОРИИ ИЗОБРАЗИТЕЛЬНОГО ИСКУССТВА Статья в формате PDF 178 KB...

01 07 2022 8:27:24

ОСНОВЫ ГРАВИТАЦИИ (КРАТКОЕ ИЗЛОЖЕНИЕ)

ОСНОВЫ ГРАВИТАЦИИ (КРАТКОЕ ИЗЛОЖЕНИЕ) Статья в формате PDF 98 KB...

24 06 2022 13:23:26

КУЛЬТУРА И ПРИРОДА

КУЛЬТУРА И ПРИРОДА Статья в формате PDF 127 KB...

23 06 2022 19:32:57

РЕФОРМИРОВАНИЕ МЕЖБЮДЖЕТНЫХ ОТНОШЕНИЙ В РФ

РЕФОРМИРОВАНИЕ МЕЖБЮДЖЕТНЫХ ОТНОШЕНИЙ В РФ Статья в формате PDF 119 KB...

22 06 2022 9:16:55

ЭЛЕМЕНТЫ ТЕОРИИ ПРУЖИННЫХ ТРАНСПОРТЕРОВ

ЭЛЕМЕНТЫ ТЕОРИИ ПРУЖИННЫХ ТРАНСПОРТЕРОВ Статья в формате PDF 114 KB...

21 06 2022 6:27:57

РЕЛЬЕФ ОКРЕСТНОСТЕЙ Г. КАДНИКОВА

РЕЛЬЕФ ОКРЕСТНОСТЕЙ Г. КАДНИКОВА Статья в формате PDF 87 KB...

17 06 2022 9:35:49

РОССИЙСКАЯ АКАДЕМИЯ ЕСТЕСТВОЗНАНИЯ

РОССИЙСКАЯ АКАДЕМИЯ ЕСТЕСТВОЗНАНИЯ Статья в формате PDF 199 KB...

10 06 2022 10:36:11

Конституционология: морфотип и дерматотип

Конституционология: морфотип и дерматотип Статья в формате PDF 116 KB...

09 06 2022 11:56:35

РОССИЯ И ВТО: ПЛЮСЫ И МИНУСЫ

РОССИЯ И ВТО: ПЛЮСЫ И МИНУСЫ Статья в формате PDF 101 KB...

06 06 2022 17:57:41

ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ДАННЫХ ЭТНОГРАФИИ

ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ДАННЫХ ЭТНОГРАФИИ Статья в формате PDF 168 KB...

05 06 2022 22:41:14

СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ХАРАКТЕРИСТИКА НЕЙРОЭНДОКРИННЫХ НЕЙРОНОВ МИНДАЛЕВИДНОГО КОМПЛЕКСА МОЗГА НА СТАДИИ ДИЭСТРУС

СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ХАРАКТЕРИСТИКА НЕЙРОЭНДОКРИННЫХ НЕЙРОНОВ МИНДАЛЕВИДНОГО КОМПЛЕКСА МОЗГА НА СТАДИИ ДИЭСТРУС Дана хаpaктеристика цитологических особенностей нейронов дорсомедиального ядра миндалевидного комплекса мозга (МК) на стадии диэструс. Полученные результаты сравниваются с ранее полученными на стадиях эструс и метэструс. Они показывают, что функциональное состояние нейроэндокринных нейронов этого ядра МК меняется в зависимости от уровней пoлoвых стероидов. ...

01 06 2022 8:58:38

Феномен технонауки

Феномен технонауки Статья в формате PDF 255 KB...

23 05 2022 12:59:49

РАСПРОСТРАНЕНИЕ РАДИОВОЛН В ГОРОДЕ

РАСПРОСТРАНЕНИЕ РАДИОВОЛН В ГОРОДЕ Статья в формате PDF 266 KB...

22 05 2022 6:30:35

АНАЛИЗ ПРОЦЕССА ДЕАСФАЛЬТИЗАЦИИ ГУДРОНА ПРОПАНОМ

АНАЛИЗ ПРОЦЕССА ДЕАСФАЛЬТИЗАЦИИ ГУДРОНА ПРОПАНОМ Статья в формате PDF 119 KB...

20 05 2022 15:32:31

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::