КОНКУРЕНЦИЯ В УСЛОВИЯХ ДУОПОЛИИ С ТОЧКИ ЗРЕНИЯ ТЕОРИИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ
Математическому моделированию процессов конкуренции и сотрудничества двух фирм на различных рынках посвящено довольно много научных работ, в основном использующих аппарат теории игр и статистических решений. В качестве примера можно привести работы таких исследователей, как Курно, Стакельберг, Бертран, Нэш, Парето, основные результаты которых приведены в [1-2,5].
В настоящей работе авторами предпринята попытка математического моделирования конкурентной борьбы с точки зрения экономической динамики с привлечением аппарата теории оптимального управления.
Изменение объемов продаж конкурирующих фирм с течением времени может быть описано следующей системой дифференциальных уравнений [4]:
(1)
с начальными условиями . (2)
Здесь и далее использованы следующие обозначения:
q1(t) - объем продаж фирмы I;
q2(t) - объем продаж фирмы II;
N - объем рассматриваемого сегмента рынка сбыта;
a1, b1, a2,b2 -положительные коэффициенты, хаpaктеризующие степень влияния различных факторов на изменения объема продаж первой и второй фирмы соответственно [4].
Замена переменных , , ; , , приводит исходную задачу Коши к безразмерному виду:
(3)
Функция хаpaктеризует степень воздействия внутренней среды первого предприятия на рост объемов продаж по отношению к аналогичной величине конкурента.
Неизбежно возникает вопрос о минимизации управленческого воздействия первого предприятия, необходимые для достижения к известному моменту времени T заранее запланированной рыночной доли , ответ на который может быть, по мнению авторов, получен из решения следующей задачи оптимального управления, которая и является предметом исследования данной работы: найти такое программное управление , которое доставляет минимум целевому функционалу
, (4)
удовлетворяет системе дифференциальных уравнений с граничными условиями (3) и ограничениями на состояние системы и управление:
, , ,
, , где . (5)
Здесь - желаемая рыночная доля первого предприятия в этот же момент времени, а значение выбиралось из следующих соображений: пусть предприятие для достижения поставленной цели располагает ресурсами Q, а величина может тpaктоваться как скорость расходования ресурсов предприятия. Следовательно, . Следует, однако, отметить, что это далеко не единственный способ выбора этой величины.
Алгоритм численного решения задачи (4)-(5) основан на отмеченной рядом исследователей [5] глубокой связью между задачами оптимального управления и математического программирования. С этой точкой зрения задача оптимального управления для непрерывной системы образует бесконечномерную задачу математического программирования в бесконечномерном прострaнcтве. Основным достоинством данного подхода является возможность применения хорошо развитого аппарата численного решения задач математического программирования к теории оптимального управления.
Следуя указанному подходу [5], переформулируем задачу в дискретной форме. Временной интервал разбивается на n равных временных интервалов, целевой функционал (4) заменяется интегральном суммой, а задача Коши (3) -конечно-разностной аппроксимацией, основанной на интерполяционных уравнениях Адамса [5].
В результате получаем задачу нелинейного программирования, в которой целевому функционалу соответствует целевая функция, а уравнение состояния превращается в 2n ограничений в форме равенств.
Ограничения на состояние системы и управления трaнcформируются в ограничения в форме неравенств задачи математического программирования:
(6)
,
,
()
; ; ; ; ;
; . (7)
Здесь:
; ; .
Задача решалась численно с помощью надстройки «Поиск решения» пакета Microsoft Office Excel 2003 по встроенному алгоритму нелинейной оптимизации Generalized Reduced Gradient (GRG2), разработанному Леоном Ласдоном (Leon Lasdon, University of Texas at Austin) и Аланом Уореном (Allan Waren, Cleveland State University).
В результате в каждой точке находились , y1(i), y2(i), а также значения целевого функционала J.
Точность полученного решения оценивалась «апостериори» путем подстановки найденного программного управления u=u(t) в (3) с последующим численным интегрированием системы ОДУ методом Рунге-Кутта четвертого порядка [3].
Некоторые результаты численных расчетов приведены на рис.1-3. При построении графиков использовались следующие значения параметров модели: ; n=20; ; ; .
Значение T варьировалось в пределах от 2 до 3.
Анализ рис. 1 позволяет сделать вывод об адекватности построенной математической модели и достаточной точности аппроксимации исходной задачи оптимального управления (3)-(5) задачей нелинейного программирования (6)-(7).
Об этом свидетельствует тот факт, что непрерывные кривые, построенные по результатам численного интегрирования задачи Коши (3) пpaктически совпадают с точками, соответствующими решению конечно-разностной задаче нелинейного программирования.
Рис. 2 указывает на то, что во всех случаях поведение оптимального программного управления обнаруживает следующую хаpaктерную особенность: до определенного момента времени , после чего резко падает до нуля. По результатам численных экспериментов .
Рис.1. Оптимальная динамика объема продаж фирмы I и фирмы II для T=3. Сплошные линии соответствуют результатам контрольного интегрирования методом Рунге-Кутта.
Рис.2. Зависимость оптимального управления от времени для случаев T=2,0 (кривая 1), T=2,5 (кривая 2), T=3,0 (кривая 3). Выделенные ресурсы Q=10,0.
Рис.3. Зависимость оптимального значения целевого функционала J от ресурсов Q для T=2.
Это позволяет сделать пpaктически важный вывод о том, что оптимальная стратегия предприятия по достижению желаемой рыночной доли в условиях дуополии заключается в приложении максимальных усилий именно на начальном участке, после чего, начиная с момента времени , можно значительно уменьшить интенсивность расхода ресурсов.
Зависимость оптимального значения целевого функционала J, от выделенных ресурсов Q представлена на рис. 3. Убывающий хаpaктер этой зависимости объясняется тем, что с увеличением Q возрастает , а значит, и интенсивность использования ресурсов на начальном, «стартовом» участке траектории динамической системы. А поскольку именно этот участок является наиболее важным с точки зрения достижения желаемого результата, в конечном итоге это приводит к интегральному эффекту экономии ресурсов.
СПИСОК ЛИТЕРАТУРЫ:
- Бережной Л.И. Теория оптимального управления экономическими системами: Учебное пособие. - СПб.: ИВЭСЭП, Знание,2002. 64 с.
- Ванько В.И., Ермошина О.В., Кувыркин Г.Н. Вариационное исчисление и оптимальное управление: Учеб. для вузов. 2-е изд./ Под ред. В.С. Зарубина, А.П. Крищенко.-М.: Изд-во МГТУ им. Баумана, 2001. 488 с.
- Мудров А.Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. Томск: МП «Раско», 1991. 272 с. ил.
- Просвиров А.Э. Копылов А.В., Динамическая модель конкуренции двух фирм на однородном рынке // Успехи современного естествознания, №8, 2003. стр. 29-33.
- Табак Д., Куо Б. Оптимальное управление и математическое программирование, перев. с англ. М., Наука, 1975. 280 с.
Статья в формате PDF
102 KB...
04 06 2023 10:13:18
Статья в формате PDF
101 KB...
03 06 2023 15:56:32
Статья в формате PDF
498 KB...
02 06 2023 5:35:23
Статья в формате PDF 93 KB...
31 05 2023 1:56:21
Статья в формате PDF
292 KB...
29 05 2023 18:56:52
Статья в формате PDF
107 KB...
28 05 2023 16:26:22
27 05 2023 16:12:19
Статья в формате PDF
128 KB...
25 05 2023 21:50:25
Статья в формате PDF 231 KB...
24 05 2023 23:46:24
Статья в формате PDF
243 KB...
23 05 2023 20:48:10
Статья в формате PDF
111 KB...
22 05 2023 5:18:49
Статья в формате PDF
115 KB...
21 05 2023 1:38:45
20 05 2023 18:23:37
Статья в формате PDF
242 KB...
19 05 2023 10:25:39
Статья в формате PDF
127 KB...
18 05 2023 23:20:51
Статья в формате PDF
110 KB...
17 05 2023 20:15:33
Статья в формате PDF
249 KB...
16 05 2023 8:33:37
В статье рассматриваются проблемы эстетического воспитания школьников, какую роль может играть в эстетическом воспитании подрастающего поколения творчество Расула Гамзатова.
...
14 05 2023 21:10:13
Статья в формате PDF
127 KB...
13 05 2023 0:21:16
Статья в формате PDF
254 KB...
12 05 2023 9:57:21
Статья в формате PDF
244 KB...
11 05 2023 6:11:23
В статье рассматривается взаимодействие тел при различных скоростях и делается вывод о несправедливости постулата о постоянстве скорости света относительно любой системы отсчета. Дается также понятное с точки зрения классической механики объяснение зависимости длины и времени от скорости.
...
10 05 2023 1:45:13
Статья в формате PDF 301 KB...
09 05 2023 11:45:12
Статья в формате PDF
239 KB...
08 05 2023 23:10:30
Статья в формате PDF
121 KB...
07 05 2023 12:16:20
Статья в формате PDF
121 KB...
05 05 2023 3:35:32
Статья в формате PDF
168 KB...
04 05 2023 4:51:12
Статья в формате PDF
284 KB...
03 05 2023 13:43:30
Статья в формате PDF
166 KB...
01 05 2023 16:37:45
Статья в формате PDF
132 KB...
30 04 2023 0:44:46
Статья в формате PDF
236 KB...
29 04 2023 17:31:57
Статья в формате PDF 250 KB...
28 04 2023 12:18:21
Статья в формате PDF
321 KB...
26 04 2023 18:19:21
Статья в формате PDF
116 KB...
25 04 2023 12:52:57
Статья в формате PDF
131 KB...
24 04 2023 13:52:29
Статья в формате PDF
119 KB...
23 04 2023 18:36:51
Статья в формате PDF
120 KB...
22 04 2023 19:19:47
Статья в формате PDF
104 KB...
21 04 2023 14:54:56
Статья в формате PDF
298 KB...
20 04 2023 18:47:13
Статья в формате PDF
137 KB...
19 04 2023 8:46:37
Статья в формате PDF
122 KB...
17 04 2023 12:12:19
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::