КОНКУРЕНЦИЯ В УСЛОВИЯХ ДУОПОЛИИ С ТОЧКИ ЗРЕНИЯ ТЕОРИИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ > Полезные советы
Тысяча полезных мелочей    

КОНКУРЕНЦИЯ В УСЛОВИЯХ ДУОПОЛИИ С ТОЧКИ ЗРЕНИЯ ТЕОРИИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

КОНКУРЕНЦИЯ В УСЛОВИЯХ ДУОПОЛИИ С ТОЧКИ ЗРЕНИЯ ТЕОРИИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

Просвиров А.Э. Музюкова Е.В. Рассмотрена экономико-математическая модель конкуренции двух фирм на однородном рынке сбыта с точки зрения теории оптимального управления. Приводится формулировка соответствующей задачи отыскания программного управления, минимизирующего суммарные издержи предприятия, необходимые для достижения заданной рыночной доли на дуополистическом рынке. Дана экономическая интерпретация полученных результатов. Статья в формате PDF 128 KB

Математическому моделированию процессов конкуренции и сотрудничества двух фирм на различных рынках посвящено довольно много научных работ, в основном использующих аппарат теории игр и статистических решений. В качестве примера можно привести работы таких исследователей, как Курно, Стакельберг, Бертран, Нэш, Парето, основные результаты которых приведены в [1-2,5].

В настоящей работе авторами предпринята попытка математического моделирования конкурентной борьбы с точки зрения экономической динамики с привлечением аппарата теории оптимального управления.

Изменение объемов продаж конкурирующих фирм с течением времени может быть описано следующей системой дифференциальных уравнений [4]:

                   (1)

с начальными условиями . (2)

Здесь и далее использованы следующие обозначения:

q1(t) - объем продаж фирмы I;

q2(t) - объем продаж фирмы II;

N - объем рассматриваемого сегмента рынка сбыта;

a1, b1, a2,b2 -положительные коэффициенты, хаpaктеризующие степень влияния различных факторов на изменения объема продаж первой и второй фирмы соответственно [4].

Замена переменных , , ; , ,  приводит исходную задачу Коши к безразмерному виду:


                 (3)

Функция  хаpaктеризует степень воздействия внутренней среды первого предприятия на рост объемов продаж по отношению к аналогичной величине конкурента.

Неизбежно возникает вопрос о минимизации управленческого воздействия  первого предприятия, необходимые для достижения к известному моменту времени T заранее запланированной рыночной доли , ответ на который может быть, по мнению авторов, получен из решения следующей задачи оптимального управления, которая и является предметом исследования данной работы: найти такое программное управление , которое доставляет минимум целевому функционалу

,                    (4)

удовлетворяет системе дифференциальных уравнений с граничными условиями (3) и ограничениями на состояние системы и управление:

, , ,

, , где .           (5)

Здесь - желаемая рыночная доля первого предприятия в этот же момент времени, а значение выбиралось из следующих соображений: пусть предприятие для достижения поставленной цели располагает ресурсами Q, а величина  может тpaктоваться как скорость расходования ресурсов предприятия. Следовательно, . Следует, однако, отметить, что это далеко не единственный способ выбора этой величины.

Алгоритм численного решения задачи (4)-(5) основан на отмеченной рядом исследователей [5] глубокой связью между задачами оптимального управления и математического программирования. С этой точкой зрения задача оптимального управления для непрерывной системы образует бесконечномерную задачу математического программирования в бесконечномерном прострaнcтве. Основным достоинством данного подхода является возможность применения хорошо развитого аппарата численного решения задач математического программирования к теории оптимального управления.

Следуя указанному подходу [5], переформулируем задачу в дискретной форме. Временной интервал   разбивается на n равных временных интервалов, целевой функционал (4) заменяется интегральном суммой, а задача Коши (3) -конечно-разностной аппроксимацией, основанной на интерполяционных уравнениях Адамса [5]. 

В результате получаем задачу нелинейного программирования, в которой целевому функционалу соответствует целевая функция, а уравнение состояния превращается в 2n ограничений в форме равенств.

Ограничения на состояние системы и управления трaнcформируются в ограничения в форме неравенств задачи математического программирования:

                               (6)

,

 ,

()

; ; ; ; ;

; .                (7)

Здесь:

; ; .

Задача решалась численно с помощью надстройки «Поиск решения» пакета Microsoft Office Excel 2003 по встроенному алгоритму нелинейной оптимизации Generalized Reduced Gradient (GRG2), разработанному Леоном Ласдоном (Leon Lasdon, University of Texas at Austin) и Аланом Уореном (Allan Waren, Cleveland State University).

В результате в каждой точке находились , y1(i), y2(i), а также значения целевого функционала J.

Точность полученного решения оценивалась «апостериори» путем подстановки найденного программного управления u=u(t)  в (3) с последующим численным интегрированием системы ОДУ методом Рунге-Кутта четвертого порядка [3].

Некоторые результаты численных расчетов приведены на рис.1-3. При построении графиков использовались следующие значения параметров модели: ; n=20; ; ; .

Значение T варьировалось в пределах от 2 до 3.

Анализ рис. 1 позволяет сделать вывод об адекватности построенной математической модели и достаточной точности аппроксимации исходной задачи оптимального управления (3)-(5) задачей нелинейного программирования (6)-(7).

Об этом свидетельствует тот факт, что непрерывные кривые, построенные по результатам численного интегрирования задачи Коши (3) пpaктически совпадают с точками, соответствующими решению конечно-разностной задаче нелинейного программирования.

Рис. 2 указывает на то, что во всех случаях поведение оптимального программного управления  обнаруживает следующую хаpaктерную особенность: до определенного момента времени   , после чего резко падает до нуля. По результатам численных экспериментов .

Рис.1. Оптимальная динамика объема продаж фирмы I и фирмы II  для T=3. Сплошные линии соответствуют результатам контрольного интегрирования методом Рунге-Кутта.

Рис.2. Зависимость оптимального управления  от времени для случаев T=2,0 (кривая 1), T=2,5 (кривая 2), T=3,0 (кривая 3). Выделенные ресурсы Q=10,0.

Рис.3. Зависимость оптимального значения целевого функционала J от ресурсов Q для  T=2.

Это позволяет сделать пpaктически важный вывод о том, что оптимальная стратегия предприятия по достижению желаемой рыночной доли в условиях дуополии заключается в приложении максимальных усилий именно на начальном участке, после чего, начиная с момента времени  , можно значительно уменьшить интенсивность расхода ресурсов.

Зависимость оптимального значения целевого функционала J, от выделенных ресурсов Q представлена на рис. 3. Убывающий хаpaктер этой зависимости объясняется тем, что с увеличением Q возрастает , а значит, и интенсивность использования ресурсов на начальном, «стартовом» участке траектории динамической системы. А поскольку именно этот участок является наиболее важным с точки зрения достижения желаемого результата,  в конечном итоге это приводит к интегральному эффекту экономии ресурсов.

СПИСОК ЛИТЕРАТУРЫ:

  1. Бережной Л.И. Теория оптимального управления экономическими системами: Учебное пособие. - СПб.: ИВЭСЭП, Знание,2002. 64 с.
  2. Ванько В.И., Ермошина О.В., Кувыркин Г.Н. Вариационное исчисление и оптимальное управление: Учеб. для вузов. 2-е изд./ Под ред. В.С. Зарубина, А.П. Крищенко.-М.: Изд-во МГТУ им. Баумана, 2001. 488 с.
  3. Мудров А.Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. Томск: МП «Раско», 1991. 272 с. ил.
  4. Просвиров А.Э. Копылов А.В., Динамическая модель конкуренции двух фирм на однородном рынке // Успехи современного естествознания, №8, 2003. стр. 29-33.
  5. Табак Д., Куо Б. Оптимальное управление и математическое программирование, перев. с англ. М., Наука, 1975. 280 с.


БИОСФЕРА, БИОРИТМЫ, ЗДОРОВЬЕ

БИОСФЕРА, БИОРИТМЫ, ЗДОРОВЬЕ Статья в формате PDF 112 KB...

01 06 2023 15:11:58

АВТОМАТИЧЕСКОЕ ЗАПОЛНЕНИЕ БАЗ ДАННЫХ

АВТОМАТИЧЕСКОЕ ЗАПОЛНЕНИЕ БАЗ ДАННЫХ Статья в формате PDF 270 KB...

30 05 2023 13:51:15

ОБЕСПЕЧЕНИЕ ОХРАНЫ И ЗАЩИТЫ РОССИЙСКИХ ЛЕСОВ

ОБЕСПЕЧЕНИЕ ОХРАНЫ И ЗАЩИТЫ РОССИЙСКИХ ЛЕСОВ Статья в формате PDF 292 KB...

29 05 2023 18:56:52

БИОФИЗИКА (учебник для вузов)

БИОФИЗИКА (учебник для вузов) Статья в формате PDF 127 KB...

26 05 2023 6:12:53

АВТОРИТЕТ ПРЕПОДАВАТЕЛЯ-ВРАЧА

АВТОРИТЕТ ПРЕПОДАВАТЕЛЯ-ВРАЧА Статья в формате PDF 94 KB...

15 05 2023 17:47:21

ЗНАЧЕНИЕ ТВОРЧЕСТВА Р. ГАМЗАТОВА, КАК ВАЖНОЕ СРЕДСТВО ЭСТЕТИЧЕСКОГО ВОСПИТАНИЯ ШКОЛЬНИКОВ

ЗНАЧЕНИЕ ТВОРЧЕСТВА Р. ГАМЗАТОВА, КАК ВАЖНОЕ СРЕДСТВО ЭСТЕТИЧЕСКОГО ВОСПИТАНИЯ ШКОЛЬНИКОВ В статье рассматриваются проблемы эстетического воспитания школьников, какую роль может играть в эстетическом воспитании подрастающего поколения творчество Расула Гамзатова. ...

14 05 2023 21:10:13

О ВЗАИМОДЕЙСТВИИ ДВИЖУЩИХСЯ ТЕЛ

О ВЗАИМОДЕЙСТВИИ ДВИЖУЩИХСЯ ТЕЛ В статье рассматривается взаимодействие тел при различных скоростях и делается вывод о несправедливости постулата о постоянстве скорости света относительно любой системы отсчета. Дается также понятное с точки зрения классической механики объяснение зависимости длины и времени от скорости. ...

10 05 2023 1:45:13

ЯКОВЛЕВ ВАДИМ ИВАНОВИЧ

ЯКОВЛЕВ ВАДИМ ИВАНОВИЧ Статья в формате PDF 114 KB...

06 05 2023 9:19:27

Продажа товаров в кредит

Продажа товаров в кредит Статья в формате PDF 113 KB...

02 05 2023 1:17:54

ЭНВИРОЛОГИЯ – НАУКА ОБ ОКРУЖАЮЩЕЙ СРЕДЕ

ЭНВИРОЛОГИЯ – НАУКА ОБ ОКРУЖАЮЩЕЙ СРЕДЕ Статья в формате PDF 149 KB...

27 04 2023 6:58:23

НЕОБХОДИМОСТЬ АНАЛИЗА НАГРУЗКИ В СОТОВЫХ СЕТЯХ

НЕОБХОДИМОСТЬ АНАЛИЗА НАГРУЗКИ В СОТОВЫХ СЕТЯХ Статья в формате PDF 104 KB...

18 04 2023 17:57:14

ПРАВОСЛАВИЕ В ОБРАЗОВАТЕЛЬНОМ ПРОСТРАНСТВЕ

ПРАВОСЛАВИЕ В ОБРАЗОВАТЕЛЬНОМ ПРОСТРАНСТВЕ Статья в формате PDF 124 KB...

16 04 2023 23:32:48

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::

ЭХОГРАФИЧЕСКИЕ МАРКЕРЫ ВНУТРИУТРОБНОЙ ИНФЕКЦИИ

Одной из важнейших проблем современной перинатологии является прогрессирующий рост инфекционной патологии у плода и новорожденного. Целью данной работы являлась комплексная ультразвуковая оценка фето-плацентарной системы у беременных с высоким инфекционным индексом для прогнозирования степени тяжести внутриутробного инфицирования у новорожденного. Обследовано 123 беременных в сроке гестации 30-36 недель. В зависимости от тяжести состояния все новорожденные ретроспективно были разделены на 4 группы. В контрольную (1 группа) вошли новорожденные от матерей с неосложненной беременностью, состояние ребенка при рождении удовлетворительное. В основную (1 – 4 группы) вошли новорожденные от матерей с высоким инфекционным индексом, с локальными или генерализованными проявлениями внутриутробной инфекции. В результате проведенного исследования выявлены эхографические маркеры амнионита, плацентита и собственно инфекционного поражения плода, которое наиболее значимо для прогнозирования рождения ребенка с ВУИ. Патологические показатели биофизической активности, допплерометрия отражают системные нарушения в состоянии плода, его дисстресс. Таким образом, чем больше эхографических маркеров внутриутробного инфицирования встречается у плода, тем более вероятно рождение ребенка с признаками ВУИ.