МОДЕЛИРОВАНИЕ, ИЗМЕРЕНИЕ, ИССЛЕДОВАНИЕ И УПРАВЛЕНИЕ ПРОЦЕССАМИ НА ГРАНИЦЕ РАЗДЕЛА ФАЗ ПРИ ВЫСОКОЭНЕРГЕТИЧЕСКОМ ИМПУЛЬСНОМ ВОЗДЕЙСТВИИ > Полезные советы
Тысяча полезных мелочей    

МОДЕЛИРОВАНИЕ, ИЗМЕРЕНИЕ, ИССЛЕДОВАНИЕ И УПРАВЛЕНИЕ ПРОЦЕССАМИ НА ГРАНИЦЕ РАЗДЕЛА ФАЗ ПРИ ВЫСОКОЭНЕРГЕТИЧЕСКОМ ИМПУЛЬСНОМ ВОЗДЕЙСТВИИ

МОДЕЛИРОВАНИЕ, ИЗМЕРЕНИЕ, ИССЛЕДОВАНИЕ И УПРАВЛЕНИЕ ПРОЦЕССАМИ НА ГРАНИЦЕ РАЗДЕЛА ФАЗ ПРИ ВЫСОКОЭНЕРГЕТИЧЕСКОМ ИМПУЛЬСНОМ ВОЗДЕЙСТВИИ

Мамаев А.И. Мамаева В.А. Статья в формате PDF 107 KB

Принципиально новым в физической химии является изучение и моделирование строения границы раздела двух жидких фаз при ее высоковольтной поляризации, описывающее состояние границы раздела под потенциалом, гидродинамику, концентрационные распределения реагирующих веществ, изменения напряженности электрического поля вблизи границы раздела и возбуждение на ней микроплазменных разрядов. Микроплазменные процессы - это сложные многостадийные процессы, состоящие из химических, электрохимических реакций, стадии микроплазменных разрядов, а также стадий массопереноса за счет диффузии, миграции, конвекции и концентрационной поляризации, усиливающихся при высоковольтной поляризации границы раздела жидких фаз. Всестороннее исследование сложных многостадийных процессов на границе раздела жидких фаз открывает новые возможности и актуально для развития теории физической химии и пpaктического применения.

Высокоэнергетическое воздействие на границу раздела и модификация поверхности материалов с целью придания ей функциональных свойств различного назначения вносят значительный вклад в развитие метода микроплазменного оксидирования - одного из наиболее эффективных, экономичных и экологически чистых методов получения оксидных керамических покрытий, обладающих износостойкими, термостойкими, коррозионно-защитными, декоративными, биоинертными и биоактивными свойствами. Широкое применение метода микроплазменного оксидирования требует экспрессного управления процессом, для этого необходимо более детально изучить процессы, происходящие на начальных стадиях формирования барьерного слоя; осуществить комплексный подход при разработке теории и технологии импульсной высоковольтной поляризации границы раздела фаз. С каждым годом растет количество публикаций по микроплазменным процессам в растворах электролитов, но они имеют в основном исследовательский или прикладной хаpaктер, теоретических работ по механизму микроплазменного процесса и методам измерения параметров микроплазменных процессов явно недостаточно, отсутствуют публикации по высоковольтному воздействию на границу раздела двух жидких фаз. Отсутствие методов измерения электрических сигналов микроплазменных процессов исключает возможность получения вольтамперных зависимостей при высоковольтной поляризации как границы электрод-электролит, так и границы раздела двух жидких фаз.

Важность метода измерения вольтамперных зависимостей быстротекущих импульсных процессов при прохождении токов высокой плотности трудно переоценить, так как она позволяет вплотную подойти к исследованию скоростей парциальных электрохимических и плазменных реакций, и соответственно к возможности их исследования и управления процессом. Разработка новых методов измерения в ряде случаев является ключевой для понимания математических моделей исследуемого процесса, проверки физико-химических моделей и выявления новых направлений пpaктического применения: синтез органических соединений, получение мембран, очистка и стерилизация медицинских препаратов и инструментов, получение электрической энергии, интенсификация процессов экстpaкции. Циклические вольтамперные хаpaктеристики зависят от вида обpaбатываемого материала и состава электролита, что позволяет использовать их для диагностики природы сплавов и технологии его изготовления, для прогнозирования и конструирования качества покрытий, а также контроля и управления процессами формирования функциональных керамических покрытий.

Теоретически обоснованы и экспериментально подтверждены критерии возбуждения микроплазменных процессов на границе раздела двух фаз при высокоэнергетическом импульсном воздействии. Необходимыми и достаточными условиями возникновения микроплазменных процессов на границе раздела двух фаз являются: поляризация границы раздела, за счет электрохимических реакций формирование барьерного слоя с низкой электропроводностью для границы раздела жидкость-жидкость, или оксидно-концентрационного слоя для границы электрод-электролит, напряженность электрического поля должна достигать напряжения пробоя.

Разработаны физико-химические модели начальных стадий формирования барьерного слоя и возникновения микроплазменных разрядов, описывающие изменение концентрации и потоков реагирующих ионов вблизи границы раздела жидких фаз, с учетом особенностей строения границы и гидродинамики, с учетом всех стадий переноса - диффузии, миграции, конвекции. Получены уравнения для концентрации реагирующих ионов и напряженности электрического поля. Показано, что на границе раздела жидкость-жидкость скорость движения жидкости на самой границе раздела максимальна при высоковольтном импульсном воздействии, а максимальная напряженность электрического поля возникает вблизи границы раздела жидких фаз, в отличие от границы электрод-электролит, где напряженность электрического поля максимальная на границе раздела, а скорость движения жидкости равна нулю.

Разработана физико-химическая модель начальных стадий формирования барьерного слоя на границе электрод-электролит для сильнотоковых микроплазменных процессов при высоковольтной импульсной поляризации при высоких скоростях изменения потенциала. Получены аналитические уравнения для потоков и концентрационного распределения реагирующих ионов в приэлектродном слое, теоретические вольтамперные зависимости.

Разработаны новые методы измерения вольтамперных зависимостей быстротекущих микроплазменных процессов на границе раздела фаз, и получены вольтамперные зависимости на границах раздела электрод-электролит и электролит-органическая жидкость в течение одного импульса при скорости изменения потенциала до 108 В/с и амплитуде напряжения до 4000 В, выделена активная и емкостная составляющие тока, что позволяет изучать кинетику процессов окисления-восстановления на границе раздела жидких фаз и процесса формирования покрытия на границе электрод-электролит. С помощью электронной системы увеличения показано, что вольтамперные зависимости границы раздела жидких фаз при высокоэнергетическом воздействии на нее, имеют воспроизводимые максимумы тока, которые хаpaктеризуют динамику изменения электродных реакций, что открывает новые перспективы и является инструментом для исследования кинетики процесса и пpaктического аналитического применения. Получены и исследованы высоковольтная импульсная поляризация границы раздела жидких фаз и микроплазменные процессы на границе раздела жидких фаз (водные растворы KOH, Н3РО4, KF, KCl, KI и органические растворители бензол, толуол, октан, гексан и др.) при поляризующем напряжении до 4000 В, что открывает новые возможности синтеза при воздействии высокоэнергетических импульсов на вещество.

Высоковольтная поляризация границы раздела жидких фаз и микроплазменные процессы приводят к появлению активных ионов в водной и радикалов в органических фазах, к активации границы раздела жидких фаз, при этом возможна разработка новых методов управления состоянием границы раздела, в том числе синтеза новых органических соединений, утилизации органических отходов, созданию нового типа топливных элементов, интенсификации процессов экстpaкции, получению перфорированных мембран из металлической фольги и полимерного пленочного материала. Показано, что вольтамперные зависимости быстротекущих импульсных процессов при высоковольтной поляризации границы раздела двух фаз зависят от их природы, что можно использовать для диагностики сред и материалов.



ГЕЛИОКЛИМАТОЛОГИЯ: ВНЕЗЕМНЫЕ ИСТОЧНИКИ ЗЕМНОГО КЛИМАТА

ГЕЛИОКЛИМАТОЛОГИЯ: ВНЕЗЕМНЫЕ ИСТОЧНИКИ ЗЕМНОГО КЛИМАТА Проведен анализ поведения 380-летних изменений солнечной активности, температуры, осадков, солнечной радиации, штормистости и СО2. Обнаружена тенденция совпадения всех процессов на ветви роста 400-летних изменений. Показано, что основным фактором климатических изменений на Земле является солнечная активность. Для дальнейших сценариев существования человечества в обозримой перспективе, уже не так важно, что лежит в основе глобального повышения температуры, CO2, осадков … Теперь важно искать пути, как снизить риски глобальных климатических изменений на природу, биосферу и экономику. Важно также оценить факторы положительные экономического развития мирового сообщества в целом и России, в частности, вызванные этими изменениями. Показано, что своевременное отслеживание и прогнозирование изменения активности Солнца и вызванных ею земных явлений позволяют снижать экономические риски и выpaбатывать оптимальную стратегию для предотвращения природных катастроф. ...

13 09 2024 11:36:58

ЯВЛЕНИЕ КРИОБИОГЕНЕЗА И САМООРГАНИЗАЦИЯ МЕРЗЛОТНЫХ ГЕОХИМИЧЕСКИХ ЛАНДШАФТОВ

ЯВЛЕНИЕ КРИОБИОГЕНЕЗА И САМООРГАНИЗАЦИЯ МЕРЗЛОТНЫХ  ГЕОХИМИЧЕСКИХ ЛАНДШАФТОВ Самоорганизация мерзлотных геохимических ландшафтов определяется явлением криобиогенеза и эффектами, которые он вызывает. Криобиогенез - это единство и взаимосвязь биогенных и криогенных процессов, формирующих мерзлотную экосистему, в которой геохимические процессы и миграция химических процессов тесно взаимосвязаны и взаимообусловлены энергией, веществом и информацией живого вещества и криогенеза. Главным условием возникновения и развития мерзлотных ландшафтов является непрерывный периодический (зима-лето) круговорот вещества во времени - криогенный и биогенный, проявляющийся в единстве, взаимодействии и соответствии друг с другом. Периодичность и взаимодействие этих главных противоположных процессов обеспечивают целостность и устойчивость системы. Периодичность явлений (зима-лето, оледенение - межледниковье) - важный признак мерзлотных ландшафтов. Этот признак обобщающий критерий и мера самоорганизации системы. В мерзлотном ландшафте биологический круговорот выполняет основную организующую роль. Он связывает воедино биогенный и криогенный циклы миграции - потоки вещества и энергии биогенеза и криогенеза, создают новую информационную систему, отличную от исходных составляющих. Криогенез и самоорганизация наиболее ярко проявляются в экосистемах на рудных провинциях, геохимически специализированных породах, нефтегазоносных и угленосных породах. Высокая самоорганизация мерзлотных ландшафтов (экосистем) Северной Азии с высокой биопродуктивностью и биоразнообразием с обилием животных (звери и рыбы) были главным фактором этногенеза. ...

11 09 2024 19:27:35

СОВРЕМЕННЫЕ ТЕНДЕНЦИИ В МАРКЕТИНГЕ

СОВРЕМЕННЫЕ ТЕНДЕНЦИИ В МАРКЕТИНГЕ Статья в формате PDF 316 KB...

05 09 2024 23:49:46

К ВОПРОСУ О ПРИМЕНЕНИИ ИННОВАЦИЙ В ОБРАЗОВАНИИ

К ВОПРОСУ О ПРИМЕНЕНИИ ИННОВАЦИЙ В ОБРАЗОВАНИИ Статья в формате PDF 127 KB...

27 08 2024 2:27:23

МОДЕЛЬ И ЗАКОНЫ ОПТИМАЛЬНОГО РАЗВИТИЯ СИСТЕМ

МОДЕЛЬ И ЗАКОНЫ ОПТИМАЛЬНОГО РАЗВИТИЯ СИСТЕМ Статья в формате PDF 1209 KB...

25 08 2024 19:33:44

ОСНОВНЫЕ ФАКТОРЫ, ОПРЕДЕЛЯЮЩИЕ ЭВОЛЮЦИЮ МИРА

ОСНОВНЫЕ ФАКТОРЫ, ОПРЕДЕЛЯЮЩИЕ ЭВОЛЮЦИЮ МИРА Статья в формате PDF 92 KB...

24 08 2024 22:52:42

МАГНИТНЫЕ ЖИДКОСТИ В СОВРЕМЕННОМ ОБЩЕСТВЕ

МАГНИТНЫЕ ЖИДКОСТИ В СОВРЕМЕННОМ ОБЩЕСТВЕ Статья в формате PDF 109 KB...

23 08 2024 4:57:36

ВЛИЯНИЕ РАДИАЦИИ НА ПЕРЕКИСНОЕ ОКИСЛЕНИЕ ЛИПИДОВ

ВЛИЯНИЕ РАДИАЦИИ НА ПЕРЕКИСНОЕ ОКИСЛЕНИЕ ЛИПИДОВ Статья в формате PDF 257 KB...

19 08 2024 15:41:44

ОГНЕСТОЙКИЕ НЕНАСЫЩЕННЫЕ ПОЛИЭФИРЫ

ОГНЕСТОЙКИЕ НЕНАСЫЩЕННЫЕ ПОЛИЭФИРЫ Статья в формате PDF 109 KB...

18 08 2024 15:39:15

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::