КИНЕТИКА ПАТОЛОГИЧЕСКИХ ИЗМЕНЕНИЙ ПРИ КУМУЛЯТИВНОМ ТОКСИКОЗЕ В ОРГАНИЗМЕ КАК КРИТЕРИЙ СОПРОТИВЛЯЕМОСТИ ПОПУЛЯЦИИ РЫБ
Несмотря на огромное значение экспериментальных данных по токсикологии рыб и очень широкой научной информации по загрязнению природных водоемов, все в большей мере проявляется необходимость экотоксикологических исследований. Теоретическим обоснованием такого направления следует считать концепцию, выдвинутую Н.С. Строгановым [45]. Сущность этой концепции заключается в сохранении вида через физиолого-биохимические нарушения в организме в условиях различного по масштабам и уровню загрязнения водоемов. Кроме этого, автор акцентировал внимание и на товарном качестве промысловых видов. Данная концепция привлекательна тем, что она объединяет все основные биологические и хозяйственные положения проблемы в единое целое. Сущность биологической части заключается в мониторинге за естественным воспроизводством популяции рыб и формированием их численности с привлечением физиолого-биохимических показателей, отражающих состояние организма и приспособление его к внешним воздействиям. Тем самым трудности изучения репродуктивной системы рыб в эксперименте снимаются и вместе с тем, критериями устойчивости организма в новых условиях служат результаты физиолого-биохимического анализа различных систем.
Словом, значение выдвинутой концепции заключается в единстве всех уровней организации от молекулярного до популяционного. В более широком аспекте экотоксикологические вопросы разработаны с позиции изменения общей биопродуктивности морей и Мирового океана С.А. Патиным [36] с привлечением данных анализа прямого влияния нефти, тяжелых металлов, пестицидов на основные показатели биологических процессов в гидроэкосистеме.
В экотоксикологических исследованиях отдаленных последствий токсикоза у рыб возникает известная трудность которая заключается в экстраполяции данных с организменного на популяционный уровень. Исходя из концепции сохранения вида, эта трудность становится преодолимой, если наряду с анализом органов, выполняющих детоксикационную функцию в преднерестовый период, изучается морфогенез пoлoвых клеток. Нами получены данные гистопатологического анализа печени и гонад на примере каспийских осетровых в речной период жизни. Печень, кроме основной детоксикационной функции, синтезирует белки, необходимые для роста и развития ооцитов. Одной из конкретных форм гепатозависимости является синтез белка вителлогена в печени, который, поступая в гонады, превращается в вителлин на стадии трофоплазматического роста клеток. Такая связь подтверждается данными, полученными другими исследованиями [1]. Впервые экспериментально была доказана атрезия ооцитов на фоне патоморфологических нарушений в печени карпа под влиянием гербицидов [37]. С накоплением ПХБ и ПАУ у рыб наблюдали гепатосомальную индукцию, сопряженную с понижением вителлогенина в крови [53].
Результаты наших исследований показали, что в период с 1982 по 1990 годы в печени рыб наблюдались различные по тяжести патогистологические нарушения. Методическая часть качественной и количественной оценки этих нарушений изложены в сборнике методик [18]. Сущность этих изменений проявлялась в виде мелковакуолизированных гепатоцитов, в других случаях эти явления представлены вакуольной дистрофией с небольшими переваскулярными и перипортальными инфильтратами. Наиболее тяжелые изменения хаpaктеризовались дискомплексацией печеночных пластинок, обширными клеточными инфильтратами вокруг портальных тpaктов, фибриноидным набуханием стенок сосудов некробиозом печеночных клеток с явлениями локального некроза. Тяжесть нарушения сопровождалась увеличением количества липидов, снижением РНП и ДНП в гепатоцитах, выявляемых гистохимическими методами. Снижение количества таких макромолекул, каковыми являются РНП и ДНП, ведет к сокращению образования белка в печени и истощению возможности трaнcляции генетической информации.
Все эти изменения в печени существенно не отразились на структуре ооцитов, но признаки предрезорбции зарегистрированы в виде набухания студенистой оболочки, в других случаях - истончения оболочек и в единичных случаях - разрыва наружной оболочки. В скелетной мускулатуре наиболее в выраженные деструктивные нарушения наблюдались с 1987 по 1990 года. Эти изменения резко снизили товарное качество балычных продуктов осетровых рыб, в связи с чем были проведены исследования с привлечением различных специалистов [28, 11, 9, 7, 35, 4].
По нашим данным в мышце спины гистологически выявлены изменения в виде разволокнения пучков, фрагментации мышечных волокон, локального исчезновения хаpaктерной поперечно-полосатой исчерченности. Встречались гомогенезированные участки безъядерных миофибрилл. Все описанные изменения в печени, мышцах, гонадах среди каспийских осетровых описаны и другими исследователями [4, 3, 38, 49, 16]. В тот же период предрезорбционные признаки в пoлoвых клетках в виде истончения оболочки и ее разрыва отмечены уже в ранний период созревания гонад каспийских осетровых, а также у сибирского осетра [2]. Подобные явления вплоть до угасания функции репродуктивной системы описаны и среди азовских осетровых [25]. Полная стерильность на фоне патологических нарушений печени зарегистрирована у карповых и окуневых рыб Обь-Иртышского бассейна [41]. Каким образом предрезорбция ооцитов отразилась на выживаемости личинок и на промвозврате каспийских осетровых в период исследования? Собственных данных и среди опубликованных материалов в литературе по этому вопросу нет. Тем более представляют интерес результаты исследований на примере истончения оболочки ооцитов сазана, что отразилось на резком снижении выживания личинок [12]. Аналогичная зависимость зарегистрирована у птиц под влиянием ДДТ [55].
В природных условиях установить зависимость накопления токсикантов во внутренних органах рыб от количества их в водной среде не всегда прослеживается. Это объясняется, во-первых, динамичностью функционального состояния рыб, во-вторых, как отмечалось выше, качественные и количественные изменения самих токсикантов в воде носят стохастический хаpaктер. Кумуляция токсикантов происходит в связи с тем, что скорость поступления их в организм превосходит скорость их выведения. Для понимания связи материального и функционального накопления нами был проведен корреляционный анализ на примере осетра и севрюги. Результаты позволили установить широкое варьирование хаpaктера и силы корреляции в зависимости от вида и пoлoвoй принадлежности рыб. Коэффициент корреляции, превышающий 0,40, отмечен по накоплению металлов и ХОП с уровнем влаги, холестерина, РНП, фосфолипидов в печени. При этом зависимость чаще наблюдалась среди самок. Хаpaктер корреляции уровня металлов и ХОП с влагой положительная, а связь других показателей с токсикантами была и прямой и обратной [21]. В общий чертах эти данные не отличались и по результатам анализа мышц и гонад. Зависимость деструктивных процессов в печени от уровня токсикантов очень слабая, коэффициент составил >0,3, но, что, самое главное, эта связь обычно прямая. По другим данным связь уровня тяжелых металлов с деструкцией скелетных мышц каспийских осетровых в тот же период времени не установлена [35]. Также наблюдали отсутствие связи уровня накопления ПХБ с патологическими изменениями во внутренних органах трески, выловленной в Атлантике. Следовательно, структурные нарушения прогрессируют по мере увеличения количественного содержания токсикантов. Обращает на себя факт тесной корреляции уровня металлов с липидами, что наблюдали в печени трески [56]. Известная прямая связь накопления ХОП с уровнем липидов в связи с липофильными свойствами пестицидов, видимо, распространяется и на металлы. Можно лишь предположить, что элементы образуют промежуточные соединения с белками, обладающими средством к липидам. Известно, что уровень накопления стабильных пестицидов увеличивается на порядок по трофической цепи от одного звена к другому [8, 13].
Таким образом, собственные и опубликованные в современной научной литературе данные, свидетельствуют об индуцирующей роли печени в процессе функционального накопления. Патологические явления в гепатоцитах, сосудистые расстройства, снижение белоксинтезирующей функции печени со временем приводят к морфологическим нарушениям пoлoвых клеток в процессе их созревания и деструкции скелетной мышцы спины, что и наблюдалось среди каспийских осетровых с 1987 по 1990 годы исследования. Последующие наблюдения с 1990 до 2001 года позволили получить новые факты индуцирующей роли печени, но уже в процессе регрессии деструктивных нарушений. В этот период исследований, за редким исключением, не отмечено случаев некробиозf и некрозf, в печени осетровых, повсеместно были зарегистрованы явления регенерации в виде двуядерных гепатоцитов (митоза), фиброза портальных тpaктов. На фоне репарации в печени существенные изменения произошли в скелетной мускулатуре и гонадах. Так, в мышце спины отсутствовали явления извистости, фрагментации микрофибрилл и разрывов мышечных пучков. В гонадах ооциты - преимущественно без изменений. Заметно возросло содержание гистохимически выявляемых РНП и ДНП, до показателей нормы понизился уровень липидов в гепатоцитах. Важно отметить, что в 1993 году вновь отмечались случаи усиления деструкции в печени, но в последующие годы регрессивные явления продолжали развиваться, в связи с чем значительно возросло количество особей с условной нормой. Таким образом, регенерация носила колебательный хаpaктер, что согласуется с опубликованными данными экспериментальных исследований на примере репарации митохондрий печени трески после снятия действия пестицида кепона [46].
Процесс регенерации не всегда завершается полным восстановлением (реституцией), и в области медицины изучены патологические формы репарации на клеточном уровне. На примере печени теплокровных животных имеются опубликованные фактические данные опухолевого роста в ходе пролиферации клеток [10]. В печени каспийских осетровых зарегистрированы опухоли в печени, гонадах и других органах [39]. Опухоли в печени были обнаружены у типичного представителя бентофагов камбалы в Балтийском море [43]. В условиях промышленного загрязнения Лос-Анджелеса у рыб, обитающих в природных водоемах, зарегистрированы случаи ослабления сократительной способности скелетной мускулатуры, пучеглазие, опухоли вокруг рта [63]. Установлена связь ксенобиотиков с радикалами цепных реакций в организме, которые способствуют опухолевому росту в печени рыб [58]. В заливе Пьюдж-Саунд обнаружено 900 загрязняющих веществ. У рыб, обитающих в этих условиях, выявлены гепатоз, некроз, неоплазия, а частота таких изменений коррелировала с содержанием ароматических углеводородов в донных осадках [57, 58]. Распространение опухолевых заболеваний среди промысловых видов рыб, безусловно, снижает качество сырья и создает опасность онкозаболеваний среди людей. Но вероятность прямого заражения людей, употрeбляющих больную рыбу, по некоторым данным не подтверждается [54].
Подобные формы патологической регенерации объясняются пролиферацией клеток, которые у некоторых особей в результате выхода части клеток из-под общего контроля завершается опухолевым ростом. С позиции современной теории патологии патоморфокинез и регенерация представляются как единый процесс [40]. На этом основании Р.К. Данилов [15] рассматривает физиологическую регенерацию в единстве с морфологической изменчивостью (гетероморфия) в новой прострaнcтвенной организации структурных элементов (гетерокинезис), присущей субклеточному, клеточному и тканевому уровням. Следовательно, пролонгирование кинетики патологических изменений в организме животных дикой фауны не может быть однозначным, поэтому реальной основой таких исследований является постоянный мониторинг за состоянием биообъектов, имеющих хозяйственное значение.
Начиная с 1990 года, нами были предприняты дополнительные исследования по изучению окислительно-восстановительных процессов в организме рыб, о которых судили по активности выявляемых гистохимически ферментов - оксидоредуктаз. Всего для анализа регистрировали 3 группы ферментов: 1 - аэробного окисления - специфические дегидрогеназы (сукцинат-, малат,-изоцитрат-, глутаматдегидрогеназы);
2 - анаэробного гликолиза и пентозного цикла (лактат-, α- глицерофосфат-, глюкозо-6-фосфатдегидрогеназы);
3 - конечного звена дыхательной цепи - цитохромоксидазы.
На данном этапе исследования в период с 1990 по 1995 годы у рыб в печени с деструктивными изменениями, по сравнению с условной нормой, активность ферментов регистрировалась на низком и умеренном уровнях. При этом отмечена повышенная активность ЛДГ, что указывает на преобладающее значение анаэробного гликолиза над аэробным окислением, уровень которого понизился за счет снижения активности сукцинат-, глутамат-, глюкозо-6-фосфатдегидрогеназ и цитохромоксидазы. В мышцах и гонадах общий уровень активности ферментов у рыб с гистоструктурными нарушениями, как и в печени, ниже, чем у рыб без нарушений [19].
На основании полученных данных анализ изменения активности оксидоредуктаз в печени осетровых классифицируется инверсией обменных процессов с преобладанием малоэффективного пути окисления, что связано с деструктивными явлениями в печени и мышце на этапе регенерации. В гонадах устойчивый анаэробиоз может привести к задержке созревания ооцитов. В общих чертах превышения анаэробиоза в гепатоцитах согласуется с опубликованными данными, полученными биохимическими методами анализа [50, 14, 32]. В зарубежной литературе имеются сведения о повышении активности цитохрома и гидролаз в печени у рыб, выловленных в загрязненных районах, по сравнению с рыбами, обитающими в относительно чистых участках [61, 62].
В свете изучения вопросов кумулятивного токсикоза большое значение имеют результаты экспериментальных данных. В опытах под влиянием острых концентраций хлорида ртути в печени гамбузии наблюдали увеличение активности малат-, и оксилацетатов при одновременном снижении глюкозо-6-фосфата и лактата. Под влиянием хлористой ртути в печени змееголова отмечали снижение щелочной фосфатазы, глюкозо-6-фосфатазы, амилазы, лактазы, кроме кислой фосфатазы и мальтазы [60]. В познании механизма химической трaнcформации ксенобиотиков в организме рыб большое значение имеют фактические данные, опубликованные в зарубежной литературе. Например, установлено участие монооксигеназ и цитохрома Р-450 в процессе превращения чужеродных соединений [61]. Также известны факты участия цитофхрома Р-450, оксидаз и цитозольной трaнcферазы в превращении гексациклопентадиена в печени ушастого окуня [59].
Анализ собственных и опубликованных материалов в отечественной и зарубежной литературе приводит к выводу о возможности организма противостоять негативному влиянию экзотоксикантов. Реальной основой сопротивляемости организма является биокатализ. В этих процессах изменение активности ферментов следует рассматривать в качестве первичной реакции биологически активных веществ, направленной на детоксикацию чужеродных соединений. Наиболее глубоко эти процессы происходят в печени в реакциях гидролиза, коньюгации, полимеризации ксенобиотиков, что основательно доказано на теплокровных животных [24]. Определенную роль в детоксикации печень выполняет за счет анатомической основы, каковой является воротная система кровообращения печени. Доказано, что ксенобиотики и лекарственные препараты из печени по желчным протокам поступают в кишечник, откуда резорбируются в кровь и по воротной вене вновь поступают в печень [6]. У рыб эта система, хотя и менее развита [44], но в принципе не отличается от гомотермных животных, по всей видимости, трудно выводимые токсиканты циркулируют в этом цикле до того момента пока в печени полностью не произойдут химические превращения токсикантов до растворимых форм, легко выводимых через почки или другими путями из организма. Основываясь на собственные и опубликованные данные, такой цикл может продолжаться годами без нового поступления токсиканта в организм.
Существенный интерес представляют и другие пути детоксикации. Например, известна способность альбумина связывать различные вещества [30]. Этот процесс также неоднозначный. Как показывают исследования, макромолекулы, обладая конформационной способностью, изменяют свою активность по отношению к различным веществам. Это может при определенных условиях привести к денатурации молекул (нарушению первичной структуры), что в итоге вызывает патологические нарушения тканей [29].
Защитные реакции организма проявляются также в виде образования комплексных соединений токсикантов с белками, обладающими специфическим сродством к конкретному яду [23]. К числу таких белков относятся иммуноглобулины, образующиеся в печени и иммунокомпетентных клетках, в качестве ответной защитной реакции организма. В сущности данный механизм отражает антителообразование, что является сутью врожденного и приобретенного иммунитета высших позвоночных животных [27], в том числе и рыб [31]. В современной научной литературе имеются данные прямого доказательства структурно-функциональной перестройки в иммунокомпетентных органах карпа под влиянием карбофоса [20]. Установлено образование неспецифического иммунного комплекса в крови в ответ на воздействие карбофосом, но при определенном количественном уровне комплекса следует подавление естественного иммунитета [33]. Сопоставляя эти данные с конформационными перестройками макромолекул, прослеживается однозначный результат, заключающийся в качественных изменениях процесса детоксикации, при которых наступает расстройство самой адаптационной функции. При этом развитие структурных нарушений, как было показано выше, сменяется их регрессией (регенерацией), которая может протекать и при неизменных условиях во внешней среде. В этой связи возникает вопрос, что же является толчком к регенерации? Обращаясь к учению о функциональной системе, регенерация - результат самоиндукции патологического процесса [5]. Данное положение мы не распространяем на все случаи, ибо обусловлено это индивидуальной устойчивостью. Следовательно, при одних и тех же нарушениях часть популяции будет погибать, другая будет противостоять негативному влиянию факторов внешней среды. Для обоснования этого положения необходимо обратиться к анализу вербальной модели кинетики патологических изменений, которые позволяют объяснить общие и отдельные элементы адаптивной модификации современных каспийских осетровых, испытывающих влияние токсикантов в водной среде.
Кинетика морфофункциональных нарушений в организме осетровых наиболее четко выявлена нами на основании альтернативного анализа по экстенсивно-структурному показателю, который вместе с тем отражает индивидуальную устойчивость рыб в современных экологических условиях [42]. В 90-е годы процент рыб с условной нормой резко увеличился и далее колебания составляли от 15 до 50 % особей, считая от общей выборки. В тот же период совершенно отсутствовали особи с тяжелыми нарушениями (некробиоз и некроз), количество которых в 80-е годы достигало 34%. Умеренные и ниже умеренного уровня патологические изменения также носили колебательный хаpaктер, но в 90-е годы процент таких случаев был выше предыдущего периода [19]. Таким образом, вербальная модель позволят рассмотреть индивидуальную изменчивость в прострaнcтвенно-временном аспекте.
Используя данные этой модели, рассмотрим хаpaктер динамики с точки зрения индивидуальной резистентности, адаптации организма и популяции к внешним факторам среды, от силы и времени воздействия которых возникает избирательная или неизбирательная (сплошная) гибель. Примером неизбирательной cмepтности являются случаи массовой гибели рыб при критическом уровне загрязнения, и здесь избирательная cмepтность равна нулю [51, 48]. Среди каспийских осетровых массовая гибель до конца 80-х годов происходила многократно, особенно в конце 60-х и 70-е годы [34]. В открытой печати эти случаи не публиковались, за исключением массовой гибели, произошедшей в 80-е годы, когда в преддельтовой части реки Волги погибло 1500 экземпляров осетровых [22]. Если массовая гибель пoлoвoзрелых особей очевидна, то избирательная гибель происходит постепенно в течение длительного периода времени и поэтому визуально зарегистрировать ее трудно, а тем более установить причину гибели.
Литература
- Айзенштадт Т.Б. Цитология оогенеза. М. Наука. 1980. 247 с.
- Акимова Н.В. // Тез. докл. Всесоюзн. совещания. Минск. 1991. С.8.
- Алтуфьев Ю.В. Адаптационные процессы в воспроизводстве каспийских осетровых //Диссертация в виде научного доклада на степень докт.биол.наук. С.-Петербург. Пушкин. 1999. 74 с.
- Алтуфьев Ю.В. //Экологические и морфофункциональные основы адаптации гидробионтов. Л. 1990. С.3.
- Анохин Т.К. Очерки по физиологии функциональных систем. М. Медицина. 1975. 446 с.
- Ашмарин И.П. Молеркулярная биология. Л. ЛГУ. 1977. 366 с.
- Бapaнникова И.А., Буковская О.С., Дюбин В.П. // Осетровое хозяйство водоемов СССР. Астpaxaнь. 1989. Ч.1. С. 20.
- Брагинский Л.П., Комаровский Ф.Я., Мережко А.И. Персистентные пестициды в экологии пресных вод. Киев. Наукова думка. 1979. 143с.
- Васильев А.С. //Осетровое хозяйство водоемов СССР. Астpaxaнь. 1989. Ч.1. С. 40.
- Вахтин Ю.Б. Генетическая теория клеточных популяций. Л. Наука. 1980. 167 с.
- Витвицкая Л.В., Никоноров С.И. //Осетровое хозяйство водоемов СССР. Астpaxaнь. 1989. Ч. 1. С. 51.
- Воробьева Э.И., Сытина Л.А., Рубцов В.В. //Эколого-морфологические исследования раннего онтогенеза позвоночных. М. Наука. 1984. С.40.
- Врочинский К.К., Земков Г.В. // Вопросы ихтиологии. 1978. № 6. С. 1128.
- Гераскин П.П., Алтуфьев Ю.В., Металлов Г.Ф. //Биологические ресурсы Каспийского моря и пути рационального их использования. Астpaxaнь. 1993. С.32.
- Данилов Р.К. //Проблемы экологии в медицине. Астpaxaнь. 1996. С.33.
- Евгеньева Т.П. Патология мышечной ткани осетровых рыб. М. 2000. 102 с.
- Елисеева Е.И., Воронина Э.А. //Экологическая физиология и биохимия рыб. Вильнюс. 1985. С.302.
- Журавлева Г.Ф., Земков Г.В. // Методы ихтиотоксикологических исследований. Л. 1987. С.36.
- Журавлева Г.Ф., Федорова Н.Н., Земков Г.В. // 3-rd Internacional Symposium on Stugeon. Italy. Piacenza. 1997. P.147.
- Заботкина Е.А., Микряков В.Р. // Итоги научно-пpaктических работ в ихтиопатологии. С. 1997. С.52.
- Земков Г.В., Журавлева Г.Ф., Кокушкина И.В. // Сб. научных трудов ГосНИОРХ. Л. 1990. Вып. 313. С. 186.
- Иванов В.П. Биологические ресурсы Каспийского моря. Астpaxaнь. 2000. 196 с.
- Каруш Ф. Сродство антител: пределы, изменчивость, роль поливалентности //В кн. Иммуноглобулины. М. Мир. 1981. С.121.
- Клисенко М.А. //Гигиена применения, токсикология пестицидов и клиника отравлений. Киев. ВНИГИНТОКС. 1970. С.54.
- Корниенко Г.Г., Дудкин С.И., Ложичевская Т.В. //Сб.тез.докл.Междун.конгресса "ЭКВАТЭК-96". М. 1996. С.56.
- Кривобок М.Н., Тарковская О.И. //Тр.ВНИРО. Вопросы физиологии рыб. М. Пищевая промышленность. 1970. Т.69. Вып.2. С.109.
- Кузник Б.И., Васильев Н.В., Цыбиков Н.Н. Иммуногенез, гомеостаз и неспецифическая резистентность организма. М. Медицина. 1989. 319 с.
- Кузьмина О.Ю. //Осетровое хозяйство водоемов СССР. Астpaxaнь. 1989. Ч.1. С.170.
- Кушнер В.П. Конформационная изменчивость и денатурация биополимеров. Л. Наука. 1977. 273 с.
- Ландау М.А. Молекулярные механизмы действия физиологически активных соединений. М. Наука. 1981. 261 с.
- Лукьяненко В.И. Иммунобиология рыб. М. Пищевая промышленность. М. 1971. 215 с.
- Металлов Г.Ф., Аксенов В.П. // I Конгресс ихтиологов России. Астpaxaнь. М. ВНИРО. 1997. С.422.
- Микряков В.Р., Половков Д.В. //Итоги научно-пpaктических работ в ихтиопатологии. М. 1997. С.78.
- Мильштейн В.В., Пашкин Л.М., Шилов В.И. // Материалы I конф. по изучению водоемов бассейна Волги. Куйбышев. 1971. С.233.
- Павельева А.Г., Зимаков И.Е., Комарова А.В., Голик Е.М. //Физиолого-биохимический статус Волго-Каспийских осетров в норме и при расслоении мышечной ткани. Рыбинск. ИБВВ АН СССР. 1989. С.45.
- Патин С.А. Влияние загрязнения на биологические ресурсы и продуктивность Мирового океана. М. Пищевая промышленность. 1979. 189 с.
- Попова Г.В. //Экспериментальная водная токсикология. Рига. Зинатне. 1973. Вып.5. С.152.
- Романов А.А. //Тез.докл.симп. «Экологические и морфофункциональные основы адаптации гидробионтов. Л. 1990. С.83.
- Романов А.А., Алтуфьев Ю.В. //Вопросы ихтиологии. М. 1990. Т.30. Вып.6. С.1040.
- Саркисов Д.С., Пальцев М.А., Хитров Н.К. Общая патология человека. М. Медицина. 1995. 269 с.
- Селюков А.Г., Мосевский В.С., Коев А.В. //Биология и биотехнология разведения сиговых рыб: Матер. 5 Всеросс.совещ. М. СПб. 1994. С.125.
- Сепетлиев Д. Статистические методы в научных медицинских исследованиях. М. Медицина. 1968. 418с.
- Сергеев Б.Л., Боговский С.П. //15-ый Менделеевский съезд по общ. и прикл.химии. Минск. 1993. С.184.
- Сидоров В.С. Экологическая биохимия рыб. Л. Наука. 1983. 238 с.
- Строганов Н.С. //Элементы водных экосистем. - М. Наука. - 1978. - С.150.
- Филимонова Г.Ф., Токин И.Б. //Экспериментальные исследования влияния загрязнителей на водные организмы. Апатиты. 1979. С.65.
- Шатуновский М.И., Вартонь А.А. //Научные доклады высш.школы «Биологические науки». М. 1967. № 5. С.34.
- Шварц С.С. //Труды института экологии растений и животных. Сверловск. 1969. Вып.65. С.12.
- Шевелева Н.Н. //Тез.докл. «Экологические и морфофункциональные основы адаптации гидробионтов». Л. 1990. С.107.
- Шелухин Г.К. //Экологические и морфологические основы адаптации гидробионтов. Л. 1990. С.108.
- Шмальгаузен И.И. Избранные труды. М. Наука. 1983. 359 с.
- Шульман Г.Е. Физиолого-биохимические особенности годовых циклов рыб. М. Пищевая промышленность. 1978. 186 с.
- Bentzen E., Lean D..S.,Taylor W.D. //Can. Y.Fish. a. Aquat. Sci. 1966. N 11. P.2397.
- Blak J.J., Baumann P.C. // Environ Health Perspect. 1991. N 90. P.27.
- De Witt // J.Agricul. a. Chem. 1956. N 4. P.56.
- Grimas U., Gothberg A., Notter M., Olsson.M., Renterd Z. // Ambio. 1985. N 14. P. 175.
- Krahn M.M., Myer M.S., Burrows D.G., Mallins D.C. //Ecotoxicol. a. Environ. Safety. 1983. V.7. N 2. P. 229.
- Mallins D.C., Myers M.S., Roubal W.T. // Environ. Sci. a. Technol. 1984. V.17. N 11. P. 679.
- Podowski A.K., Sclove S.Z., Philipowicz A., Khan M.M. //Arch. Environ. Contam. a. Toxicol. 1991. v.20. N 4. P. 488.
- Rana S.V., Sharma R. // J. Appl. Toxicol. 1992. V.2. N 6. P.275.
- Stegeman J.G. //Vie mar. 1985. N 6. P.29.
- Stein J.E. // Environ, Toxicol. a. Chem. 1995. v.14. N 6. P. 1019.
- Yongs W.D., Gutchmann W.H. // Environ. Sci. a. Technol. 1972. v.6. N 5. P. 451.
Статья в формате PDF 104 KB...
09 12 2024 17:41:57
Статья в формате PDF 313 KB...
08 12 2024 9:14:27
Статья в формате PDF 134 KB...
07 12 2024 1:42:35
Статья в формате PDF 119 KB...
06 12 2024 9:39:54
Статья в формате PDF 127 KB...
05 12 2024 0:12:16
Исторически развитие лесной таксации происходило на основе многовекового позитивного (для лесного хозяйства, также и для леса как экологической системы) опыта взаимодействия людей с деревьями. Исходя из биотехнического принципа в лесной таксации, показана возможность моделирования возрастных распределений лесных деревьев по сортности бревен, экспертно назначаемых таксатором на стволе растущих деревьев подеревной глазомерной таксацией. ...
04 12 2024 12:47:16
Статья в формате PDF 133 KB...
03 12 2024 8:31:31
Статья в формате PDF 206 KB...
02 12 2024 12:36:39
Статья в формате PDF 114 KB...
01 12 2024 12:22:47
Статья в формате PDF 113 KB...
30 11 2024 0:39:31
29 11 2024 9:57:21
Статья в формате PDF 144 KB...
28 11 2024 4:11:10
Рассмотрена концепция зависимости лесов как ядра биосферы Земли от активности Солнца по числу Вольфа. Принята точка на Земле в виде участка лесистой территории национального парка по лесным пожарам за 2002 год. По датам каждого лесного пожара были учтены: время от зимнего солнцестояния с 21 марта, склонение оси Земли к Солнцу, число Вольфа активности Солнца на день возникновения лесного пожара. Среди влияющих факторов первое место заняло время от зимнего солнцестояния. Второе место – склонение Солнца, а на третье – число Вольфа. Среди зависимых факторов первым стало склонение Солнца, вторым – время от 21.03, а третьим активность Солнца. В итоге параметры Земли первичны. Наиболее опасен интервал числа Вольфа 90 ≤ V ≤ 180 и сильный размах колебания во многом зависит от поведения людей. ...
26 11 2024 18:21:23
Статья в формате PDF 155 KB...
25 11 2024 10:35:50
Статья в формате PDF 148 KB...
24 11 2024 14:23:56
Статья в формате PDF 111 KB...
22 11 2024 15:35:55
Статья в формате PDF 315 KB...
21 11 2024 21:21:36
Статья в формате PDF 666 KB...
20 11 2024 3:38:33
Статья в формате PDF 145 KB...
19 11 2024 12:33:22
Статья в формате PDF 127 KB...
18 11 2024 7:24:18
Статья в формате PDF 100 KB...
17 11 2024 0:18:24
Статья в формате PDF 181 KB...
16 11 2024 7:21:22
В данной статье освещается тема метафизики границ бытия человека в немецкой классической философии. Анализ данной темы основан на трудах Канта и Гегеля. В статье отмечается, что, согласно воззрениям Канта и Гегеля, становление человеческой природы тесно связано с религией, а достигается в условиях государственной формы бытия. ...
15 11 2024 6:37:45
Статья в формате PDF 114 KB...
14 11 2024 11:55:52
Статья в формате PDF 139 KB...
13 11 2024 8:34:53
Изучалось влияние на синаптическую передачу ряда фармакологических препаратов (соланин, дециламин, декаметоний, морфолин, госсипол, пикриновая кислота), имеющих по своей химической структуре общие хаpaктерные функциональные группы, но относящиеся к различным классам соединений. Так как изучение механизма действия исследуемых веществ имеет большое значение для пpaктической медицины и для понимания происходящих процессов в периферической нервной системе, нами была предпринята попытка раскрыть хаpaктер их влияния на освобождение медиатора их нервных окончаний грудной мышцы m. Cutaneus pectoris травяной лягушки Rana temporaria. ...
12 11 2024 5:36:36
Статья в формате PDF 109 KB...
11 11 2024 0:10:47
Статья в формате PDF 123 KB...
10 11 2024 0:24:56
Статья в формате PDF 140 KB...
09 11 2024 17:50:10
Статья в формате PDF 123 KB...
07 11 2024 14:55:48
Статья в формате PDF 148 KB...
06 11 2024 23:42:23
Статья в формате PDF 141 KB...
05 11 2024 2:24:47
Статья в формате PDF 102 KB...
04 11 2024 16:13:24
Статья в формате PDF 129 KB...
03 11 2024 12:53:43
Статья в формате PDF 120 KB...
02 11 2024 13:52:34
Статья в формате PDF 108 KB...
01 11 2024 23:12:12
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::