ПРОБЛЕМНЫЕ ВОПРОСЫ РАЗВИТИЯ АРХИТЕКТУРЫ МОДУЛЯРНОГО НЕЙРОКОМПЬЮТЕРА НА ОСНОВЕ СВОЙСТВ БИОЛОГИЧЕСКИХ НЕЙРОНОВ
Дальнейшее повышение производительности и надежности компьютеров связывают с искусственными нейронными сетями (ИНС), являющимися основой нейрокомпьютеров (НК) [1].
Нейрокомпьютеры - вычислители нового класса, активное развитие которых обусловлено объективными причинами, связанными, с одной стороны, с принципиальными этапами развития современной технологии элементной базы, в основном определяющим развитие архитектуры любых ЭВМ, а с другой стороны - пpaктическими требованиями все быстрее и дешевле решать конкретные задачи [1].
Способность ИНС к обучению, самоорганизации и адаптации создает потенциальные предпосылки для создания нового класса вычислительных систем.
ИНС - это огромные параллельные взаимосвязанные сети простых элементов, которые предназначены для взаимодействия с объектами реального мира таким же образом, как взаимодействуют биологические нервные системы.
Существует общее мнение, из-за чего возникает интерес к этим сетям, что они могут выполнять некоторые сложные и творческие задачи, такие как распознавание образов, прогнозирование, оптимизация, распознавание речи и др., похожие на те, которые выполняет человеческий мозг [2]. Для реализации этих задач традиционными методами выполнения хаpaктерны относительно низкие хаpaктеристики. Для улучшения этих хаpaктеристик возникает необходимость использования нейронных сетей, которые имеют свойства, сходные со свойствами человеческого мозга, такими как: ассоциативное обобщение, параллельный поиск, адаптация к изменениям среды и другие.
Сегодня известны хорошо развитые теории и методы ИНС, которые состоят из большого количества простых элементов обработки, называемых узлами, связанными между собой синаптической связью. Эти модели способны к обучению и принятию решений и подходят для различных задач распознавания образов.
ИНС - это система обработки информации, широко используемая в различных областях применения, причем, во всех этих областях, нейросети хаpaктеризуются соединением адаптивных алгоритмов и параллельно - распределенной обработки. Хотя ИНС и являются биологически мотивированы, их сходство с моделями мозга не является точным.
При сравнении человеческого мозга с современными компьютерами Фон Неймана, в плане обработки информации, можно заметить, что время переключения нейронов (несколько миллисекунд), примерно в миллион раз медленнее, чем время переключения элементов современного компьютера, но они имеют в тысячи раз большую соединяемость, чем современный компьютер [2]. Однако, необходимо отметить, что к ИНС применяются некоторые свойства, приобретаемые из биологических нейросетей, а именно:
1. Каждый нейрон действует независимо от всех остальных нейронов и его выход определяется только своим входом из соответствующих соединений.
2. Каждый нейрон располагает информацией, обеспечивающей только свои соединения.
3. Большое количество соединений обеспечивают многоразовое резервирование и обеспечивают распределенное представление информации.
Первые два свойства определяют параллельность обработки информации, третье - присущую нейросети отказоустойчивость.
Большинство моделей ИНС являются крайне необходимыми как для вычислительного процесса, так и для области запоминания. Многим применениям также необходима высокая пропускная способность, особенно при обработке данных в реальном масштабе времени. Для этого необходимо развивать модели параллельной ИНС так, чтобы паралелизм вычисления ИНС можно было легко реализовать.
Модели параллельных ИНС должны удовлетворять следующим требованиям:
1. Функция каждого узла должна быть простой и выполнять постоянное действие.
2. Коммуникационная конфигурация должна быть простой и регулярной.
3. Передача данных между узлами должна быть параллельной и однообразной.
В самом деле, массивно параллельная обработка в ИНС представляет очень естественное и желаемое решение. Секрет их огромных вычислительных возможностей состоит в том, что параллельную обработку выполняют нейроны и синапсы. Несмотря на то, что каждый нейрон выполняет простую аналоговую обработку на низкой скорости, богатая связность между нейронами через синапсы представляет мощные вычислительные способности для большого количества данных.
Кроме того, большинство нейронных алгоритмов включают в себя, прежде всего повторяющиеся и регулярные операции. Их можно эффективно отобразить в параллельных структурах, а обработку данных осуществлять в нейронных сетях конечного кольца.
Разработка модулярного нейрокомпьютера основана на объединении 2-х идей: модулярной арифметики и нейронных сетей. Такое объединение несет большие потенциальные возможности для перехода компьютерных систем на следующий уровень развития.
Идея модулярной арифметики состоит в том, что цифры числа являются независимыми, поэтому обpaбатывать их можно одновременно, так как никаких переносов из младших разрядов в старшие нет. Это обстоятельство и определяет параллельную обработку всех разрядов. Детальное обсуждение этих вопросов приведено в [3, 4].
Искусственные нейронные сети представляют собой устройства параллельных вычислений, состоящих из множества простых процессоров, которые исключительно просты, особенно в сравнении с процессорами, используемыми в персональных компьютерах.
Нейронные сети состоят из нейронов, которые соединены разнообразными связями в сеть и определяют интеллект, творческие способности и память человека. Искусственные нейронные сети имеют биологические предпосылки.
Разработка искусственных разумных систем, которые реализуют преимущества биологических существ, созданных на основе теории нейронных сетей и модулярной арифметики является актуальной проблемой, так как такое объединение несет большие потенциальные возможности для перехода компьютерных систем на качественно новый уровень - на уровень модулярных нейрокомпьютеров.
Модулярные нейрокомпьютеры являются важнейшим современным направлением разработок сверхвысокопроизводительной и надежной вычислительной техники.
Структура нейронной сети и структура алгоритма решения задачи, представленные в системе остаточных классов, обладают естественным параллелизмом, что позволяет сделать вывод о том, что алгоритмы функционирования вычислительных средств, представленных в системе остаточных классов, можно представить как алгоритмы нейроподобных вычислительных образований. С этой точки зрения алгоритмы вычислений при использовании непозиционной арифметики, соответствуют алгоритмами вычислений с помощью базовых процессорных элементов (искусственных нейронов). По этой причине схемы в остаточных классах адекватны схемам, которые реализованы с помощью искусственных нейронов.
Нейросетевые методы открывают широкие возможности для использования формального математического аппарата в различных сферах деятельности, ранее относящихся лишь к области человеческого интеллекта. Нейрокомпьютеры, построенные на базе нейронных сетей, являются перспективным направление развития вычислительной техники с массовым параллелизмом. Кроме того, при исследовании было установлено те только семантическое сходство математических моделей системы остаточных классов и нейронных сетей, но и единая их организация, что и определило перспективность разработки нейрокомпьютеров, функционирующих в системе остаточных классов. Параллельные вычислительные структуры являются идеальной основой для построения устойчивых к отказам вычислительных средств. Ключевую роль в процессе функционирования таких вычислительных устройств играет - способность сохранения работоспособного состояния за счет снижения в допустимых пределах каких-либо показателей качества при возникновении сбоев и отказов в системе. Достоинство данного подхода к выполнению процедур обеспечения отказоустойчивости реализуется в полной мере при перераспределении исходных данных между сохранившимися вычислительными ресурсами при деградации системы.
Литература
- Галушкин А.И. Нейрокомпьютеры. - М: Радиотехника, 2003. 528 с.
- Zhong D. Parallel VLSI neural sutions desings. - Springer, 1998. 257 p.
- ЧервяковН.И., СахнюкП.А., ШапошниковА.В., Ряднов С.А. Модулярные параллельные вычислительные структуры нейропроцессорных систем. - М.: Физматлит, 2003. 288 с.
- ЧервяковН.И., СахнюкП.А., ШапошниковА.В., Макоха А.Н. Нейрокомпьютеры в остаточных классах. - М.: Радиотехника, 2003. 272 с.
Статья в формате PDF 311 KB...
08 12 2024 18:58:29
В экспериментальных стресс-моделях на крысах при использовании блокатора D2–рецепторов галоперидолом, исследовался уровень участия дофаминергической системы мозга и зависимость психотропных эффектов аспирина, ацетилсалицилатов цинка (АСЦ) и кобальта (АСК). В ходе работы был получен весомый аргумент в пользу того, что антидепрессантный эффект исследованных салицилатов в значительной мере реализуется через дофаминергическую систему мозга. ...
07 12 2024 16:37:41
Новая реальность предъявляет к человеку повышенные требования. Выживание человека в сложных условиях – это сохранение его целостности (как биологического индивида, личности, субъекта деятельности и индивидуальности). Защищенность личности – условие психологического выживания человека в мире. Неосознаваемые психологические защиты снижают свободу действий человека. В статье рассматриваются психологические аспекты адаптации человека. Для сохранения устойчивости личности необходимы психологические константы – мировоззрение, жизненная позиция, смысл жизни, профессионализм. ...
06 12 2024 20:23:16
Статья в формате PDF 119 KB...
05 12 2024 0:40:23
В статье рассматриваются вопросы разработки единой системы подготовки спортсменов. Обоснованы четыре взаимообусловленных и неразрывно связанных между собой факторов, от которых зависит прогресс высшего спортивного мастерства. Первый фактор системы подготовки предполагает наличие у спортсменов высоких двигательных и психологических качеств в сочетании с хорошим здоровьем. Второй фактор системы подготовки предполагает совершенную методику спортивной тренировки, систему соревнований и восстановления. Третий фактор системы подготовки предполагает наличие хорошо оборудованных на современном уровне мест для тренировочных занятий, соревнований и восстановления (отдыха). Четвёртый фактор системы подготовки предполагает высокий уровень знаний, педагогическое мастерство тренера, и постоянное самоусовершенствование спортсмена. Приведённые факторы определяют основные принципиальные положения системы подготовки спортсмена. Разработаны и разделены по возрастным группам (от 7 до 20 лет и старше) требования предъявляемые к системе подготовки спортсмена и соревнованиям. ...
04 12 2024 22:26:32
Впервые было изучено интерлейкина – 8 – 251 ТА среди женщин Азербайджана больными эндометриозом. 50 пpaктически здоровых и 70 женщин больных эндомертиозом находились под нашем наблюдением. Исследование показали что, генетический полиморизм интерлейкина – 8 А/Т 251 играет роль в потогенезе эндометриоза. ...
03 12 2024 19:18:26
Статья в формате PDF 136 KB...
01 12 2024 7:49:17
Статья в формате PDF 123 KB...
30 11 2024 16:57:57
Статья в формате PDF 161 KB...
29 11 2024 5:17:38
Статья в формате PDF 131 KB...
28 11 2024 5:36:29
Статья в формате PDF 130 KB...
27 11 2024 20:15:50
Статья в формате PDF 109 KB...
26 11 2024 6:38:15
Статья в формате PDF 109 KB...
25 11 2024 13:21:55
Статья в формате PDF 114 KB...
24 11 2024 2:37:42
Статья в формате PDF 244 KB...
23 11 2024 9:40:22
Статья в формате PDF 116 KB...
22 11 2024 3:13:33
Статья в формате PDF 115 KB...
21 11 2024 9:42:18
Статья в формате PDF 124 KB...
19 11 2024 15:59:35
18 11 2024 2:33:30
Статья в формате PDF 116 KB...
17 11 2024 13:27:29
Статья в формате PDF 101 KB...
16 11 2024 2:53:30
Статья в формате PDF 180 KB...
15 11 2024 15:33:55
Статья в формате PDF 348 KB...
13 11 2024 16:47:56
09 11 2024 6:12:42
В статье рассматривается вопрос долговременного архивного хранения угасающих документов. Проанализированы сложности, возникающие при их микрофильмировании. Предложена методика предварительной компьютерной обработки сканированных изображений таких документов, обеспечивающая повышение качества их визуального восприятия до требований государственного стандарта к микрофильмируемым оригиналам. Обработанные изображения в дальнейшем могут быть выведены на фотоплёнку с использованием COM-систем (Computer Output Microfilm), либо распечатаны на бумажный носитель и микрофильмированы обычным способом. ...
08 11 2024 3:33:56
Статья в формате PDF 172 KB...
07 11 2024 21:49:55
Статья в формате PDF 104 KB...
06 11 2024 4:21:47
05 11 2024 20:54:40
Статья в формате PDF 292 KB...
03 11 2024 1:50:23
Статья в формате PDF 269 KB...
02 11 2024 8:30:49
Статья в формате PDF 114 KB...
01 11 2024 18:20:51
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::