КОЛЕБАНИЯ УПРУГО-ПЛАСТИЧЕСКОЙ СРЕДЫ
Колебания среды, возникающие в твердом теле при высоких температурах, оказывают значительное влияние на образование в нем структурных дефектов. Изучение хаpaктера распространения колебаний в упруго-пластической среде является актуальной задачей физики конденсированного состояния. Взаимосвязь колебаний плотности структурных дефектов и смещений среды можно описать с помощью калибровочной теории дефектов [1].
Целью работы является определение частот колебаний упруго-пластической среды с дефектами структуры.
Из полевых уравнений теории [1] следуют уравнения непрерывности и равновесия в обобщенной форме:
, (1)
где , , ; греческие индексы принимают значения 0, 1, 2, 3, а латинские - 1, 2, 3; - коэффициенты упругой жесткости кристалла; ρ = const - плотность материала; c - скорость света; - тензор деформаций кристалла; αij - тензор теплового расширения кристалла, α0a=0; T - температура.
uαβ = (∂βuα + ∂αuβ + θαβ + θβα)/2, (2)
где - вектор смещений; θαβ - компоненты объектов аффинной связности, обусловленные трaнcляционными дефектам, например, краевыми дислокациями.
Основные уравнения имеют более простой вид в случае изотропной среды. Коэффициенты упругой жесткости вычисляются по формуле:
cijkl = λ∙δijδkl+μ∙δilδjk+ν∙δikδlj. (3)
Подставив (2) и (3) в (1), получим уравнение динамики среды с дефектами:
, (4)
где , , , по повторяющимся индексам подразумевается суммирование. Правая часть уравнения (4) содержит вынуждающие силы.
Направим ось Ox по направлению распространения волны, тогда вектор смещений ui(x,t) можно разложить на продольную и поперечные составляющие вида A0exp{i(ω∙t+k∙x)}.
Величины p, si, fi зададим в виде гармонических колебаний с амплитудами A1, A2, A3 соответственно, сдвинутых по фазе на величину φ относительно смещений. Подставим ui(x,t), p(x,t), si(x,t) и fi(x,t) в (4). Для продольных колебаний получим уравнение:
-(λ+2μ)k2+ρω2 = (- i∙λkτ1 - μτ2 + iρcωτ3)eiφ, (5)
для поперечных колебаний:
- μk2+ρω2 = (- i∙λkτ1 - μτ2 + iρcωτ3)eiφ, (6)
где , m = 1, 2, 3.
Решив уравнения (5), (6) относительно ω, получим два корня:
, n = 0,1, (7)
где для продольных колебаний:
,
для поперечных колебаний:
,
.
Мнимая часть выражения (7) определяет коэффициент нарастания (затухания) колебаний. Волновые решения с Imwn ≠ 0 физически не реализуются в твердом теле.
Найдем частоты волн колебаний, распространяющихся в среде с дефектами. Положим мнимую часть ωn равной нулю и определим значение разности фаз φ. Для упрощения расчетов выберем τ2 = τ3 = 0, тогда получим два значения φ0 = π/2, φ1 = - π/2, при которых
для поперечных колебаний
ωn = ( |(-1)n k∙μ + τ1∙λ|∙k / ρ )1/2, n = 0,1; (8)
для продольных колебаний
ωn = ( |(-1)n k∙(λ+2μ) + τ1∙λ|∙k / ρ )1/2, n = 0,1 (9)
Частоты (8) и (9) соответствуют физически возможным решениям уравнения (4) для незатухающих волн деформации. При τ1 = 0 выражения (8), (9) переходят в известные выражения для волн в упругой среде без дефектов. Структурные дефекты влияют на частоту распространяющихся волн. Зависимость ωn от отношения амплитуд τ для продольных колебаний показана на рис. 1. Для частоты поперечных колебаний график имеет аналогичный вид. В расчетах использованы значения λ = -5,09∙1011 Н/м2 и μ= 5,31∙1011 Н/м2, ρ = 2,3 ∙ 103 кг/м3, k = 1 м-1.
Рисунок 1. Зависимость частоты продольных волн в упруго-пластической среде от отношения амплитуд τ: 1 - ω0(τ); 2 - ω1(τ)
Функция ω0(τ) монотонно возрастает при τ>0. Функция ω1(τ) имеет минимум, в котором частота достигает значения ωmin = 0, что соответствует стоячим волнам. Длина стоячих волн зависит от значения τ.
Таким образом, получены следующие типы решений: 1 - непрерывно возрастающие (убывающие) по амплитуде волны, реально не наблюдаемые; 2 - незатухающие волны деформации, в дисперсионные соотношения которых входят упругие постоянные среды, плотность среды, отношение амплитуд колебаний вынуждающей силы и смещений.
СПИСОК ЛИТЕРАТУРЫ
[1] Bogatov N.M. Gauge field theory of dislocations formation by thermal stresses // Phys. Stat. Sol. (b). 2001. V. 228. №3 P.651- 661.
Статья в формате PDF
100 KB...
14 07 2025 16:59:34
12 07 2025 16:53:19
Статья в формате PDF
164 KB...
11 07 2025 18:33:46
Статья в формате PDF
135 KB...
10 07 2025 2:53:24
Статья в формате PDF
112 KB...
09 07 2025 0:14:54
Статья в формате PDF
148 KB...
08 07 2025 0:22:50
В статье отражены результаты комплексного исследования подготовленности спортсменок, специализирующихся в беге на 300-400 м с барьерами. Дан анализ статистически достоверных различий по педагогическим, физиологическим и биометрическим показателям в ответственейший момент спортивной карьеры - момент перехода с «детской» дистанции (бега на 300 м с барьерами) на олимпийскую дисциплину (400 м с барьерами). Выявлены взаимосвязи между различными сторонами подготовленности: физической, функциональной и технической. Представленный материал можно использовать в виде модельных хаpaктеристик для дeвyшек в возрасте 15-16 лет и закономерностей становления спортивного мастерства при уточнении Учебной программы для детско-юношеских спортивных школ, специализированных детско-юношеских школ олимпийского резерва и школ высшего спортивного мастерства по разделу «Барьерный бег».
...
07 07 2025 13:40:58
Статья в формате PDF
114 KB...
06 07 2025 10:51:53
Статья в формате PDF
106 KB...
05 07 2025 10:51:48
Статья в формате PDF
327 KB...
04 07 2025 13:44:56
Статья в формате PDF
140 KB...
03 07 2025 3:55:32
Статья в формате PDF
221 KB...
02 07 2025 20:16:15
Статья в формате PDF
340 KB...
01 07 2025 14:27:30
Географическое расположение и климатические условия Нижнего Поволжья, неудовлетворительная экологическая обстановка способствует росту заболеваемости мочепoлoвoй системы у населения, проживающего в регионе. Увеличение частоты заболеваемости уратным нефролитиазом диктует необходимость поиска адекватного объема терапии по улучшению качества консервативного лечения этой патологии.
Изучение особенностей симптомокомплекса уратного нефролитиаза в разных возрастных группах (25-30; 40-45; 60-70 лет) позволило научно обосновать и разработать пpaктические рекомендации по рациональному и эффективному лечению данного вида мочекаменной болезни у пациентов с учетом их возраста.
...
30 06 2025 3:48:32
Статья в формате PDF
245 KB...
29 06 2025 18:47:38
Статья в формате PDF
206 KB...
28 06 2025 22:25:32
На материале 769 клинических наблюдений проведен анализ причин возникновения острого панкреатита после эндоскопической папиллотомии. Установлено, что основой их развития является прямое повреждение главного протока поджелудочной железы. Разработаны способы профилактики постманипуляционных панкреатитов.
...
27 06 2025 5:44:11
Статья в формате PDF
110 KB...
26 06 2025 3:37:19
Статья в формате PDF
305 KB...
25 06 2025 17:44:28
Статья в формате PDF
119 KB...
24 06 2025 6:30:21
Статья в формате PDF
144 KB...
23 06 2025 16:25:21
Статья в формате PDF
285 KB...
22 06 2025 2:42:58
Статья в формате PDF
120 KB...
20 06 2025 20:48:33
Статья в формате PDF
109 KB...
19 06 2025 21:44:49
18 06 2025 17:53:34
Статья в формате PDF
316 KB...
17 06 2025 9:41:55
Статья в формате PDF
104 KB...
16 06 2025 3:53:52
1.Второй закон Ньютона в катастрофе это неоспоримый факт.
2.Нужно думать, что после такой катастрофы вся классическая физика полетит к чёрту, вместе с физиками, которые попытаются её защищать.
3.Учёные физики всех стран попали в капкан у них дилемма: или они признают теорию Ростовцева или им грозит скамья подсудимых за ложную науку и обман человечества.
...
15 06 2025 0:49:59
Статья в формате PDF
101 KB...
14 06 2025 20:25:42
Статья в формате PDF
115 KB...
13 06 2025 9:53:21
Статья в формате PDF
136 KB...
12 06 2025 19:40:20
Статья в формате PDF
143 KB...
11 06 2025 14:18:47
Статья в формате PDF
729 KB...
09 06 2025 4:41:56
Статья в формате PDF
107 KB...
08 06 2025 8:47:49
Статья в формате PDF
345 KB...
07 06 2025 18:29:33
Статья в формате PDF
111 KB...
06 06 2025 10:51:17
Статья в формате PDF
118 KB...
05 06 2025 2:38:24
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::