ИЗУЧЕНИЕ РЕАКЦИИ ДЕЗАМИНИРОВАНИЯ В СИНТЕЗЕ ПИРИМИДИНОВОГО КОМПОНЕНТА ВИТАМИНА В1 > Полезные советы
Тысяча полезных мелочей    

ИЗУЧЕНИЕ РЕАКЦИИ ДЕЗАМИНИРОВАНИЯ В СИНТЕЗЕ ПИРИМИДИНОВОГО КОМПОНЕНТА ВИТАМИНА В1

ИЗУЧЕНИЕ РЕАКЦИИ ДЕЗАМИНИРОВАНИЯ В СИНТЕЗЕ ПИРИМИДИНОВОГО КОМПОНЕНТА ВИТАМИНА В1

Литвак М.М. Статья в формате PDF 291 KB

Изучены побочные реакции дезаминирования в синтезе пиримидинового компонента - полупродукта витамина В1. Предложены методики контроля дезаминирования, которые могут быть использованы в совершенствовании технологического процесса.

В качестве пиримидинового компонента в двухкомпонентной схеме синтеза витамина В1, обычно используют гидрохлорид 4-амино-2-метил-5-хлорометилпиримидин (ХАП∙НСl). Его получают путем продолжительного гидрохлорирования 4-амино-2-метил-5-этоксиметилпиримидина при 70 °С в среде подходящих органических растворителей с добавлением воды для обеспечения хотя бы частичной растворимости ХАП∙НСl и создания требуемой высокой концетрации HCl [1]. Реакция осложняется процессами дез-аминирования и гидролиза [2].

Проведенные нами ЯМР - исследования показали, что в целевом ХАП∙НСl мольная доля всех продуктов дезаминирования (замещение NH2-группы на Cl) может составлять до 13-15 %. При такой степени дезаминирования образец должен содержать до 3,8 % (масс.) NH4Cl (показано, что в процессе выделения «сырого» ХАП∙НСl фильтрацией потери NH4Cl с фильтратом незначительны). На наш взгляд, наиболее достоверная информация о составе «сырого» ХАП∙НСl может быть получена из результатов комплексного исследования: определения 5-хлорометилпиримидинов по ковалентно связанному атому хлора с помощью титриметрии и ГЖХ [3]; а также определения примеси NH4Cl.

Наиболее употрeбляемая методика определения NH4Cl основана на его количественном взаимодействии с формалином под действием щелочи с образованием уротропина; возникающий при этом в эквивалентном количестве HCl оттитровывают щелочью [1]. Однако было неясно, в какой мере гидролиз ХАП∙НСl, протекаемый в условиях анализа, будет сказываться на результате определения NH4Cl.

Предложенный нами способ определения примеси NH4Cl основан на количественном улавливании аммиака, выделяющегося при обработке щелочью образца «сырого» ХАП∙НСl в оптимизированных условиях, исключающих влияние возможных отрицательных факторов на результаты анализа. Установку для анализа собирают как описано ниже. Круглодонную колбу, снабженную капелной воронкой с «обратной связью» и газоотводной трубкой, соединяют с поглотительной мерной пробиркой (типа промывной склянки Дрекселя). Поглотительную пробирку подсоединяют к вакуумному насосу.

Вначале опыта в колбу последовательно помещают около 2 г «сырого» ХАП∙НСl (взвешивают на аналитических весах) и около 2 г чешуированного NaOH, капельную воронку заполняют водой в количестве 10,0 мл, а в пробирку для поглощения NH3 из бюретки прибавляют 10,0 мл 0,2 н. серной кислоты. Далее, снизив давление в установке до 30-35 мм рт. ст., в реакционную колбу постепенно прибавляют воду, не допуская сильного «вскипания» раствора H2SO4 в поглотительной пробирке. Содержимое реакционной колбы легкими движениями взбалтывают до получения раствора. После прекращения выделения пузырьков газа реакционную колбу плавно помещают в заранее нагретую до 85 °С водяную баню. Через несколько минут отмечается поступление конденсата в поглотительную пробирку. Нагрев колбы продолжают до сбора в поглотительной пробирке около 5 мл конденсата, что легко контролировать по приросту объема раствора серной кислоты. Контрольные эксперименты показывают, что эти условия являются достаточными для полной десорбции NH3.

Методом титриметрии определяют NH3 и делают перерасчет на содержание NH4Cl в «сыром» ХАП∙НСl. Результаты анализа хорошо согласуются с таковыми, полученными независимым методом с помощью ПМР (рабочая частота 250 МГц) по интегральным интенсивностям сигналов NH2-групп аминопиримидинов и примесного NH4Cl (триплет с δ 7,87 м.д., JN-H = 51,3 Гц).

Имеются экспериментальные данные, показывающие, что проведение аналогичного анализа без использования вакуумной системы и нагреве реакционной массы до 120 °С (для обеспечения полноты десорбции NH3) приводит к значительному завышению результатов анализа (на 150 % !), вследствие, по-видимому, деструкции пиримидинового цикла в жестких условиях (температура, избыток щелочи) с образованием летучих соединений основного хаpaктера.

Проведенные исследования могут быть использованы в совершенствовании технологического процесса витамина В1.

Список литературы

  1. Березовский В.М. Химия витаминов. - М:, 1973.
  2. Литвак М.М. О возможных примесях в гидрохлориде 2-метил-4-амино-5-хлорометилпиримидина и качестве получаемого из него витамина В1 // Хим.-фарм. журн. - 1999. - №2. - С. 43-45.
  3. Литвак М.М., Луценко Т.П., Орел Г.П. Определение 4-амино-2-метил-5-этоксиметилпиримидина в дигидробромиде 4-амино-2-метил-5-бромометилпиримидина методом ГЖХ // Ред. Хим.-фарм. журн. Деп. 23.03.91, № 2166-691.


АНТРОПОГЕННОЕ ВЛИЯНИЕ ПРИЕМОВ ОСНОВНОЙ ОБРАБОТКИ НА ЭЛЕМЕНТЫ МЕХАНИЧЕСКОГО СОСТАВА СЕРОЙ ЛЕСНОЙ ПОЧВЫ

АНТРОПОГЕННОЕ ВЛИЯНИЕ ПРИЕМОВ ОСНОВНОЙ ОБРАБОТКИ НА ЭЛЕМЕНТЫ МЕХАНИЧЕСКОГО СОСТАВА СЕРОЙ ЛЕСНОЙ ПОЧВЫ Вовлечение серой лесной почвы в сельскохозяйственное производство в течение 26 лет приводит к формированию специфических свойств, которые обусловлены преобразованием микроагрегированности почв. Активность этого процесса зависит от типа агрогенной нагрузки. Так механическое воздействие на серую лесную почву в результате ежегодной отвальной вспашки на 20–22 см вызывает изменение коэффициента полидисперсности и фактора дисперсности в слое 30–40 см. Применение ежегодной безотвальной обработки на глубину 6–8 см не оказывает существенного влияние на микроагрегированность почвы, что не приводит к формированию плужной подошвы. ...

10 04 2024 5:29:57

О СТРУКТУРЕ ИНТЕРАКТИВНОГО ПЛАКАТА

О СТРУКТУРЕ ИНТЕРАКТИВНОГО ПЛАКАТА Статья в формате PDF 257 KB...

08 04 2024 16:17:36

О ПРИНЦИПЕ РАБОТЫ ЛЮСТРЫ ЧИЖЕВСКОГО

О ПРИНЦИПЕ РАБОТЫ ЛЮСТРЫ ЧИЖЕВСКОГО Статья в формате PDF 141 KB...

03 04 2024 14:39:54

КЛЕТКИ СТЕКЛОВИДНОГО ТЕЛА ГЛАЗА ЧЕЛОВЕКА

КЛЕТКИ СТЕКЛОВИДНОГО ТЕЛА ГЛАЗА ЧЕЛОВЕКА Статья в формате PDF 140 KB...

28 03 2024 23:58:53

Соматизмы в аспекте межкультурной коммуникации

Соматизмы в аспекте межкультурной коммуникации Статья в формате PDF 250 KB...

25 03 2024 17:57:29

Успехи и перспективы развития эмбриологии

Успехи и перспективы развития эмбриологии Статья в формате PDF 104 KB...

24 03 2024 6:15:50

Анатомия внутренних подвздошных артерий плода

Анатомия внутренних подвздошных артерий плода Статья в формате PDF 112 KB...

21 03 2024 13:25:37

Роль пахидермии и папиллом в развитии paка гортани

Роль пахидермии и папиллом в развитии paка гортани Статья в формате PDF 105 KB...

20 03 2024 21:49:46

БИОСФЕРА, БИОРИТМЫ, ЗДОРОВЬЕ

БИОСФЕРА, БИОРИТМЫ, ЗДОРОВЬЕ Статья в формате PDF 112 KB...

17 03 2024 19:32:21

УСЛОВИЯ ЭФФЕКТИВНОСТИ БЛОЧНО-МОДУЛЬНОГО ОБУЧЕНИЯ

УСЛОВИЯ ЭФФЕКТИВНОСТИ БЛОЧНО-МОДУЛЬНОГО ОБУЧЕНИЯ Статья в формате PDF 157 KB...

13 03 2024 3:22:59

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::