ВЫВОД УРАВНЕНИЯ ЛАГРАНЖА С ИСПОЛЬЗОВАНИЕМ ФУНКЦИИ СОСТОЯНИЯ > Полезные советы
Тысяча полезных мелочей    

ВЫВОД УРАВНЕНИЯ ЛАГРАНЖА С ИСПОЛЬЗОВАНИЕМ ФУНКЦИИ СОСТОЯНИЯ

ВЫВОД УРАВНЕНИЯ ЛАГРАНЖА С ИСПОЛЬЗОВАНИЕМ ФУНКЦИИ СОСТОЯНИЯ

Пономарёв Ю.И. Зеленский А.В. Статья в формате PDF 317 KB

В работе Пономарёва [1] был предложен метод получения основного уравнения механики с помощью введения в ней функции состояния .Такой подход позволяет в отличии от использования традиционного принципа наименьшего действия проще получить уравнение Лагранжа.

Введём в рассмотрение функцию состояния П которая описывает состояние исследукмой частицы и зависит от qi, qi(t), t где qi(t) это обобщённая координата с индексом i, а qi отличается от qi(t) только тем что qi это функция только от начального вркмени

dП = ∑(∂П∕∂qi)dqi + ∑(∂П∕∂qi)(dqi/dt)dt + (∂П∕∂t)dt.

Введём следующие обозначения: рi = ∂П∕∂qi,

W = -∂П∕∂t, L = ∑(∂П/∂qi)(dqi/dt)dt + (∂П/∂t)dt,

Из этого следует:

L = р1(dq1/dt) + р2(dq2/dt) + ... + рm(dqm/dt) - W, (1)

где W -это полная энергия, р1, р2, ..., рm - обобщённые импульсы.

Обозначим через ∑ суммирование всех элементов с индексом i. Так например в книге Г. Голдстейна «Классическая механика» пишется :

H(p,q,t) = ∑(dqi/dt)рi - L(q,dq∕dt, t)

где H - это функция Гамильтона.

Рассмотрим случай когда H = W. Поэтому:

L = ∑(dqi/dt)рi -
- ((1/2)∑(dqi/dt)рi + F) = (1/2)∑(dqi/dt)рi - F. (2)

В книге Г. Голдстейна «Классическая механика» пишется что эта формула выполняется когда система консервативна ,а кинетическая энергия является однородной квадратичной функцией от обобщённых скоростей. Где F - это потенциальная энергия а ∑ - это суммирование всех элементов с индексом i.

С учётом того что в большинстве случаев обобщённый импульс зависит не более чем от производной первого порядка от соответствующей обобщённой координаты то согласно формуле 2 мы получаем:

∂L/∂(dqi/dt) = рi.

Дифференциал dП будет полным дифференциалом если смешанные частные производные от П по её аргументам не будут зависеть от порядка дифференцирования.

Например

δр1/δt = ∂L/∂q1.

Так как мы имеем дело с полной функциaнaльной производной то с учётом формулы ∂L/∂(dq1/dt) = р1 получаем уравнение Лагранжа :

d(∂L/∂(dq1/∂t))/dt = ∂L/∂q1.

Список литературы

  1. Пономарёв Ю.И. Функция состояния в классической механике и теории поля // Успехи современного естествознания. - 2008.
  2. Голдстейн Г. Классическая механика: монография. - М.: Наука, 1975.


ДИАГНОСТИКА ПРИ ГРЫЖАХ ПЕРЕДНЕЙ БРЮШНОЙ СТЕНКИ

ДИАГНОСТИКА ПРИ ГРЫЖАХ ПЕРЕДНЕЙ БРЮШНОЙ СТЕНКИ Статья в формате PDF 245 KB...

11 12 2024 9:23:21

РОЛЬ ВОДЫ В ОСНОВНЫХ СТРУКТУРАХ ЖИВОГО ОРГАНИЗМА

РОЛЬ ВОДЫ В ОСНОВНЫХ СТРУКТУРАХ ЖИВОГО ОРГАНИЗМА Статья в формате PDF 950 KB...

10 12 2024 2:21:15

АНОМАЛИИ ПОЛОЖЕНИЯ ЗУБОВ У ДЕТЕЙ В ВОЗРАСТЕ ОТ 11 ДО 16 ЛЕТ (НА ПРИМЕРЕ Г. КРАСНОДАРА)

АНОМАЛИИ ПОЛОЖЕНИЯ ЗУБОВ У ДЕТЕЙ В ВОЗРАСТЕ ОТ 11 ДО 16 ЛЕТ (НА ПРИМЕРЕ Г. КРАСНОДАРА) В настоящее время основной задачей стоматологии является профилактика кариеса, особенно для возрастной группы 11-16 лет. Ранее была установлена связь между кариесом и аномалиями зубочелюстной деформацией системы. В 2001-2002 г нами было обследовано 2504 ребенка в возрасте от 11 до 16 лет. Из них 1016 (40,6%) мальчиков и 1488 (59,4%) девочек. Из числа выявленных аномалий прикуса чаще наблюдался глубокий прикус, затем дистальный, осложненный открытым прикусом, мезиальный и открытый, остальные виды прикусов встречались крайне редко. На основе компьютерной обработке полученных данных очевидно, что деформация зубочелюстной системы встречается в возрастных группах со сменным и постоянным прикусом; - аномалии прикуса составляют 53% от общего количества обследованных детей; - аномалии положения отдельных зубов составляют 39% от общего количества обследованных детей. ...

08 12 2024 8:29:55

КЛАССИФИКАЦИЯ БОЛЬНЫХ, СТРАДАЮЩИХ ХРОНИЧЕСКОЙ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТЬЮ МЕТОДОМ «ДЕРЕВЬЯ КЛАССИФИКАЦИИ»

КЛАССИФИКАЦИЯ БОЛЬНЫХ, СТРАДАЮЩИХ ХРОНИЧЕСКОЙ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТЬЮ МЕТОДОМ «ДЕРЕВЬЯ КЛАССИФИКАЦИИ» В статье описывается способ диагностики хронической сердечной недостаточности у больных ишемической болезнью сердца с помощью метода дерева классификации, который позволяет с использованием клинических показателей диагностировать функциональный класс со статистической достоверностью. ...

25 11 2024 10:59:55

ОСОБЕННОСТИ ИННОВАЦИОННОЙ ДЕЯТЕЛЬНОСТИ ВУЗОВ

ОСОБЕННОСТИ ИННОВАЦИОННОЙ ДЕЯТЕЛЬНОСТИ ВУЗОВ Статья в формате PDF 99 KB...

22 11 2024 20:45:51

СМАШЕВСКИЙ НИКОЛАЙ ДМИТРИЕВИЧ

СМАШЕВСКИЙ НИКОЛАЙ ДМИТРИЕВИЧ Статья в формате PDF 318 KB...

17 11 2024 7:44:44

НАРУШЕНИЯ ЗДОРОВЬЯ, ОБУСЛОВЛЕННЫЕ ДИОКСИНАМИ

НАРУШЕНИЯ ЗДОРОВЬЯ, ОБУСЛОВЛЕННЫЕ ДИОКСИНАМИ Статья в формате PDF 111 KB...

13 11 2024 18:35:52

СИСТЕМА ПОДГОТОВКИ БОРЦОВ С УЧЁТОМ ИХ КВАЛИФИКАЦИИ И ВОЗРАСТА

СИСТЕМА ПОДГОТОВКИ БОРЦОВ С УЧЁТОМ ИХ КВАЛИФИКАЦИИ И ВОЗРАСТА В статье рассматриваются вопросы разработки единой системы подготовки спортсменов. Обоснованы четыре взаимообусловленных и неразрывно связанных между собой факторов, от которых зависит прогресс высшего спортивного мастерства. Первый фактор системы подготовки предполагает наличие у спортсменов высоких двигательных и психологических качеств в сочетании с хорошим здоровьем. Второй фактор системы подготовки предполагает совершенную методику спортивной тренировки, систему соревнований и восстановления. Третий фактор системы подготовки предполагает наличие хорошо оборудованных на современном уровне мест для тренировочных занятий, соревнований и восстановления (отдыха). Четвёртый фактор системы подготовки предполагает высокий уровень знаний, педагогическое мастерство тренера, и постоянное самоусовершенствование спортсмена. Приведённые факторы определяют основные принципиальные положения системы подготовки спортсмена. Разработаны и разделены по возрастным группам (от 7 до 20 лет и старше) требования предъявляемые к системе подготовки спортсмена и соревнованиям. ...

11 11 2024 8:15:51

ТОПОГРАФИЯ КРАНИАЛЬНЫХ БРЫЖЕЕЧНЫХ ЛИМФАТИЧЕСКИХ УЗЛОВ У МОРСКОЙ СВИНКИ

Краниальные брыжеечные лимфатические узлы морской свинки размещаются вдоль ствола одноименной артерии и около конца подвздошно-ободочной артерии (центральные и периферические узлы). ...

10 11 2024 20:17:46

ЛИМФАТИЧЕСКАЯ СИСТЕМА: ОПРЕДЕЛЕНИЕ

ЛИМФАТИЧЕСКАЯ СИСТЕМА: ОПРЕДЕЛЕНИЕ Лимфатическая система на всех уровнях своей организации и этапах своего развития в эволюции и онтогенезе представляет собой специализированный дренажный отдел сердечно-сосудистой системы, коллатеральный к венам. ...

06 11 2024 20:38:46

УЛЬТРАСТРУКТУРНЫЕ ОСОБЕННОСТИ СТРОЕНИЯ КЛЕТОК ЭПИТЕЛИЯ ТОНКОЙ КИШКИ У ЭКСПЕРИМЕНТАЛЬНЫХ ЖИВОТНЫХ В ЗАВИСИМОСТИ ОТ ХАРАКТЕРА ВСКАРМЛИВАНИЯ (СМЕШАННОЕ, ИСКУССТВЕННОЕ)

УЛЬТРАСТРУКТУРНЫЕ ОСОБЕННОСТИ СТРОЕНИЯ КЛЕТОК ЭПИТЕЛИЯ ТОНКОЙ КИШКИ У ЭКСПЕРИМЕНТАЛЬНЫХ ЖИВОТНЫХ В ЗАВИСИМОСТИ ОТ ХАРАКТЕРА ВСКАРМЛИВАНИЯ (СМЕШАННОЕ, ИСКУССТВЕННОЕ) В статье освещаются морфофункциональные особенности структуры стенки тонкой кишки в зависимости от хаpaктера вскармливания в экспериментальных условиях. Представлены собственные результаты исследования по вопросу о электронно-микроскопическом строении слоев стенки тонкой кишки при смешанном и искусственном вскармливании в эксперименте. ...

05 11 2024 11:50:35

ФОРМА И ТОПОГРАФИЯ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ У КРЫСЫ

ФОРМА И ТОПОГРАФИЯ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ У КРЫСЫ Поджелудочная железа белой крысы имеет три основные части – головка (дуоденальная часть), тело (пилорическая часть) и хвост (желудочно-селезеночная часть). По сравнению с человеком, она отличается большей рыхлостью, изогнутостью, разветвленностью. Встречаются два крайних варианта формы (в виде молотка или трилистника) и топографии поджелудочной железы у белой крысы. ...

02 11 2024 7:15:35

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::