60–СУТОЧНАЯ МЕХАНИЧЕСКАЯ РАЗГРУЗКА МЫШЦ ЧЕЛОВЕКА И ЕЕ ВЛИЯНИЕ НА ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА НЕРВНО МЫШЕЧНОГО АППАРАТА > Полезные советы
Тысяча полезных мелочей    

60–СУТОЧНАЯ МЕХАНИЧЕСКАЯ РАЗГРУЗКА МЫШЦ ЧЕЛОВЕКА И ЕЕ ВЛИЯНИЕ НА ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА НЕРВНО МЫШЕЧНОГО АППАРАТА

60–СУТОЧНАЯ МЕХАНИЧЕСКАЯ РАЗГРУЗКА МЫШЦ ЧЕЛОВЕКА И ЕЕ ВЛИЯНИЕ НА ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА НЕРВНО МЫШЕЧНОГО АППАРАТА

Коряк Ю.А. Статья в формате PDF 130 KB

К.Э. Циолковский писал «... мы, земные жители, ... мечтаем о межпланетных путешествиях...» [1] и, несмотря на сложность проблемы, стоящей перед человечеством, по словам К.Э. Циолковского «... эта задача может быть решена. Решение основывается на особом приеме изучения людей...» [2]. Современное развитие мировой космонавтики подтвердили надежды К.Э. Циолковского: в первую декаду десятиления нового столетия человечество ожидает первый межпланетный пилотируемый полет на Марс, поскольку Марс является потенциально приемлемым для жизни планета. Полеты на эту планету обеспечит волнующие и уникальные возможности увеличить наши знания о происхождении, эволюции и распределении жизни во Вселенной.

Влияние условий микрогравитации на сократительные свойства скелетных мышц у человека интенсивно исследуется [3-13]. Замечено, что «разгрузка» двигательного аппарата у пациентов с гипсовым ограничением в течение нескольких недель в условиях клиники вызывает значительное снижение массы и силы сокращения мышцы [14-16], степень которой пропорциональна длительности механической разгрузки [17]. Аналогичные структурные и функциональные изменения скелетных мышц отмечаются и у космонавтов/астронавтов после пребывания в условиях реальной невесомости [4, 5, 10, 18-20], или у человека после пребывания в модельных условиях, имитирующих невесомость [5, 6, 8, 9, 11, 21-24]. Эти изменения связывают с локальными факторами - сниженной (уменьшенной) мышечной нагрузкой и/или относительной иммобилизацией сустава и соответствующих мышц [16, 25-27]. Главным фактором, ответственным за все эти изменения - это устранение проприоцептивной информации от мышц (особенно с опopных зон стопы [28, 29]) и сухожилий в ответ на отсутствие механической нагрузки и, соответственно, в этой связи антигравитационные или постуральные мышцы являются основной мишенью для действия функциональной разгрузки.

Перспективной моделью в условиях Земли, имитирующей физиологические эффекты гравитационной разгрузки многих функций и органов живого организма у человека и, в частности скелетных мышц, выполняющих основную двигательную функцию, является жесткая пocтeльнaя антиортостатическая (-6 °) гипокинезия (АНОГ) [3, 30]. Ранее выполненные исследования обнаружили тесную связь между уровнем снижения силы сокращения мышц у человека, находящегося в условиях реальной невесомости, и в наземных условиях имитирующих ее [5]. Показано, что 120-суточное пребывание в условиях АНОГ, вызывает уменьшение максимальной произвольной силы (МПС) и максимальной силы (Ро) сокращения трехглавой мышцы голени (ТМГ) в среднем на 45.5 и 33.7 %, соответственно, увеличение силового дефицита (на 60 %) и времени изометрического одиночного сокращения мышцы [6, 22, 24]. 370-cуточная АНОГ также обнаруживает снижение сократительных свойств (возможностей) ТМГ, но сдвиги в силовых сократительных свойствах были существенно меньше (однако, следует учесть, что после 120-суток пребывания в условиях АНОГ, испытуемые стала применять комплекс физических упражнений). Так, величина МПС и Ро уменьшилась в среднем на 21.9 и 24.9 %, соответственно (впервые представлены, ранее неопубликованные данные). Целью настоящей работы было исследовать сокртаительные свойства ТМГ у человека и их изменения после пребывания в условиях 60-суточной АНОГ. В исследовании приняли участвие клинически здоровые мужчины (n = 6; возраст - 30.8 ± 3.1 лет, рост - 181.3 ± 2.3 см, вес - 79.8 ± 7.7 кг), которые прошли специальный медицинский отбор и отличались относительно высокой устойчивостью к ортостатической нагрузке. Экспериментальные процедуры были выполнены в соответствии с Хельсинской Декларацией и испытуемые после полной информации о процеДypaх и задачах исследования дали письменное согласие на участие. Программа исследований была одобрена комиссией по биомедицинской этике при ГНЦ РФ - ИМБП РАН.

Влияние гравитационной «разгрузки» на функциональные свойства нервно-мышечного аппарата (на примере трехглавой мышцы голени - ТМГ) у человека изучали на модели 60-суточной АНОГ [30].

Сократительные свойства ТМГ в условиях in situ оценивали дважды - за 10-8 дней до «закладки» испытуемых на пocтeльный режим и на 3 день после «выхода» из АНОГ. Регистрацию изометрических механических ответов ТМГ осуществляли с использованием тендометрического динамометра [31]. Силовые свойства ТМГ оценивали по тендограммам: изометрического максимального произвольного усилия, развиваемого испытуемым (максимальная произвольная сила - МПС), выполненного при условии «сократить максимально сильно», изометрического одиночного сокращения (ОС) мышцы, развиваемого в ответ на электрическое раздражение n. tibialis супрамаксимальной силой одиночным импульсом прямоугольной формы длительностью 1 мс (сила одиночного сокращения - Рос) и изометрического тетанического сокращения (максимальная сила -Ро), развиваемой мышцей в ответ на электрическое тетаническое ритмическое раздражение n. tibialis с частотой 150 имп/с [31]. По разнице между Ро и МПС, отнесенной к Ро и выраженной в процентах, определяли силовой дефицит (Рд). Скоростные свойства ТМГ оценивали по тендограмме развития изометрического ОС. Рассчитывали: время достижения пика ОС (время одиночного сокращения - ВОС), время от артефакта раздражения до пика ОС; время полурасслабления (1/2ПР) - время от пика до половины расслабления и общее время сокращения (ОВС) мышцы - время от артефакта раздражения до полного расслабления [31]. Скоростно-силовые свойства ТМГ оценивали по времени достижения изометрического произвольного сокращения до 25 %-, 50 %- и 75 %-уровня напряжения от максимума, выполненного при условии «сократить максимально быстро и сильно». Аналогично рассчитывали временные параметры развития электрически вызванного сокращения при электрической стимуляции n. tibialis с частотой 150 имп/с [31].

После 60-суточной АНОГ величина Рос, МПС и Ро ТМГ уменьшилась в среднем на 17.3, 33.5 и 18.0 %, соответственно, (р < 0.01). Показатель Рд, хаpaктеризующий степень совершенства центральнонервных координационных механизмов управления мышечным аппаратом, увеличился на 61.0 %. ВОС и время 1/2ПР ТМГ уменьшилось на 3.4 (p > 0.05) и 7.2 %, соответственно, а ОВС незначительно (на 1.3 %; p > 0.05) увеличилось. Время нарастания изометрического напряжения, или иначе градиент, произвольного сокращения ТМГ значительно увеличилось при достижении любого относительного уровня напряжения мышцы, составив 45.6, 89.1 и 29.6 %, соответственно (p < 0.001), тогда как кривые сила-время при электрически вызванном сокращении обнаруживают тенденцию к увеличению вогнутости.

Таким образом, результаты настоящего исследования, во-первых, подтверждают ранее полученные наши данные [6, 8, 22], что неупотрeбление мышц ассоциируется как с уменьшением сократительных способностей самих мышц (периферический фактор), так и снижением центральной (моторной) посылки (центрально-нервный фактор). Изменения в скоростных сократительных свойствах мышцы предполагает изменение в кинетики развития активного состояния контpaктильных элементов мышцы [33, 34]. Во-вторых, максимальные значения степени изменений функциональных свойств нервно-мышечного аппарата у человека достигают, по-видимому, на относительно раннем этапе воздейстия микрогравитации и глубина этих изменений медленно дрейфует по мере увеличения срока пребывания в условиях микрогравитации.

СПИСОК ЛИТЕРАТУРЫ:

  1. Циолковский Э.К. Космическая философия. // В кн.: Очерки о вселенной (составители Н.Г. Белова, Л.А. Кутузова, Т.В. Чугрова). М. ПАИМС. 1992. C. 229-237.
  2. Циолковский Э.К. Горе и гений. // В кн.: Очерки о вселенной (составители Н.Г. Белова, Л.А. Кутузова, Т.В. Чугрова). М. ПАИМС, 1992. C. 20-30.
  3. Convertino V.A., Bisson R., Bates R., Goldwater D., Sandler H. Effects of antiorthostatic bedrest on the cardiorespiratory responses to exercise. // Aviat. Space Environ. Med. 1981. V. 52. p. 251-255
  4. Козловская И.Б., Григорьева Л.С., Гевлич Г.И. Сравнительный анализ влияний невесомости и ее моделей на скоростно-силовые свойства и тонус скелетных мышц человека. // Космич. биол. и авиакосмич. мед. 1984. Т. 18. c. 22-26.
  5. Григорьева Л.С., Козловская И.Б. Влияние невесомости и гипокинезии на скоростно-силовые свойства мышц человека. // Космич. биол. и авиакосмич. мед. 1987. Т. 21. с. 27-30.
  6. Коряк Ю.А., Козловская И.Б. Влияние длительной постельной антиортостатической гипокинезии на функциональные свойства нервно-мышечного аппарата у человека. // Физиол. ж. 1992. Т. 38. c. 67-75.
  7. Suzuki Y., Murakami T., Kawakuba K., Goto S., Makita y., Ikawa S., Gunji A. Effects of 10 and 20 days bed rest on leg muscle mass and strength in young subjects. // Acta Physiol. Scand.[Suppl. 616]. 1994. V. 150. p. 5-18.
  8. Koryak Yu. Contractile characteristics of the triceps surae muscle in healthy males during 120-days head-down tilt (HDT) and countermeasure. // J. Gravit. Physiol. 1994. V. 1. P141-P143.
  9. Koryak Yu. Mechanical and electrical adaptation of skeletal muscle to gravitational unloading. // J. Gravit. Physiol. 1995. V. 2. P76-P79.
  10. LeBlanc A., Rowe R., Schneider V., Evans H., Hedrick T. Regional muscle loss after short duration spaceflight. // Aviat. Space Environ. Med. 1995. V. 66. p. 1151-1154.
  11. Koryak Yu. Mechanical and electrical changes in human muscle after dry immersion. // Eur. J. Appl. Physiol. 1996. V. 74. p. 133-140.
  12. Koryak Yu. Changes in the action potential and contractile properties of skeletal muscle in human´s with repetitive stimulation after long-term dry immersion. // Eur. J. Appl. Physiol. 1996. V. 74. 496-503.
  13. Koryak Yu. The effect of 120-days of bed rest with and without countermeasures on the mechanical properties of the triceps surae muscle in young women. // Eur. J. Appl. Physiol. 1998. V. 78. p. 128-135
  14. Lippman R.K., Selig S. An experimental study of muscle atrophy. // Surg. Gynecol. Obstet. 1928. V. 47. p. 512-522.
  15. Dietrick J.E., Whedon G.D., Shorr E. Effects of immobilization upon various metabolic and physiologic function of normal man. // Am. J. Physiol. 1948. V. 4. p. 3-38.
  16. Appell H.J. Muscular atrophy following immobilization. A review // Sports Med., 1990. V. 10. p. 42-58.
  17. Palmer I. On the injuries to the ligaments of the knee joint. // Acta Chir. Scand. 1938. V. 91 [Suppl.]. p. 53-60.
  18. Antonutto G., Capelli C., Giradis M., Zamparo P., di Prampero P.E. Effects of microgravity on muscular explosive power of the lower limbs in humans. // Acta Astronautica. 1995. V. 36. p. 473-478.
  19. Koryak Yu., Kozlovskaya I. The effects of a 115-day spaceflight on neuromuscular function in crewman. // 18th Ann. Inter. Gravit. Physiol. Meeting. 1997. P. 92.
  20. Koryak Yu., Siconolfi S.F., Kozlovskaya I.B., Gilbert J.H., Layne C.S. Maximal voluntary (MVC), tetanic (Po) and single twitch (Pt) contractions before & after space flight. // FASEB J. 1997. A-1408.
  21. Коряк Ю.А., Козловская И.Б. Возбудимость мотонейронного пула у человека в условиях длительной антиортостатической гипокинезии (АНОГ). // Матер. VII Всерос. симп. «Эколого-физиолог. пробл. адаптации». М. 1994. с. 127-128.
  22. Koryak Yu. Contractile properties of the human triceps surae muscle during simulated weightlessness. // Eur. J. Appl. Physiol. 1995. V. 70. p. 344-350.
  23. Jaweed M.M., Grana E.A., Glennon T.P., Monga T.N., Mirabi B. Neuromuscular adaptations during 30 days of cast-immobilization and head-down bedrest. // J. Gravit. Physiol. 1995. V. 2. p. 72-P73.
  24. Коряк Ю.А. Реакция скелетной мышцы у человека на снижение гравитации. // Физиол. ж. 1997. Т. 43. с. 96-108.
  25. Booth F.W., Gollnick P.D. Effects of disuse on the structure and function of skeletal muscle. // Med. Sci. Sports Exerc. 1983. V. 15. p. 415-420.
  26. Fitts R.H., Metzger J.M., Riley D.A., Unsworth B.R. Models of disuse : a comparison of hindlimb suspension and immobilization. // J. Appl. Physiol. 1986. V. 60. p. 1946-1953.
  27. Goldspink D.F., Morton A.J., Loughna P., Goldspink G. The effeсt of hypokinesia and hypodinamia on protein turnover and the growth of four skeletal muscles of the rat. // Pflügers Arch. 1986. V. 407. p. 333-340.
  28. Kozlovskaya, I.B., Aslanova, I.F., Grigorieva, L.S. & Kreidich, Yu.V. Experimental ***ysis of motor effects of weightlessness. The Physiologist, 1982. V. 25 [ (Suppl.]. S49-S52.
  29. Kozlovskaya, I., Dmitrieva, I., Grigorieva, L., Kirenskaya, A. & Kreydich, Yu. (1988) Gravitational mechanisms in the motor sistem. Studies in real and simulated weightlessness. // Stance and Motion. Facts and Concepts. (eds. Gurfinkel V.S., Ioffe M.Ye., Massion J.). Plenum, New York. p. 37-48.
  30. Генин А.М., Сорокин П.А. Длительное ограничение подвижности как модель влияния невесомости на организм человека // Пробл. космич. биол. М., 1969. С. 9-16.
  31. Коряк Ю.А. Методы исследования нервно-мышечного аппарата у спортсменов М. ИМБП. 1992.
  32. Hill A.V. The abrupt transition from rest to activity in muscle // Proc. Roy. Soc. Ser. B, 1949, V. 136, p. 399-420.
  33. Rosenfalck P. Staircase phenomenon of human muscle: relation to the active state. // Nature, 1968. V. 218. p. 958-959.
  34. Rosenfalck P. Change in active state during the staircase phenomenon of human muscle. // Acta Physiol. Scand. 1974. V. 92. p. 12-20.


ИСТОКИ ФРАКТАЛЬНОЙ ПЕДАГОГИКИ

ИСТОКИ ФРАКТАЛЬНОЙ ПЕДАГОГИКИ Статья в формате PDF 245 KB...

20 04 2025 3:13:26

МИКРОЭКОЛОГИЯ ЧЕЛОВЕКА (ЧАСТЬ I)

МИКРОЭКОЛОГИЯ ЧЕЛОВЕКА (ЧАСТЬ I) С экологических позиций излагается представление о человеке как метасистеме, состоящей из макроскопического (тело) и микроскопического (микробиота) компонентов. Последний определяется как биоценоз микроорганизмов — бактерий, простейших, микроскопических грибов и вирусов, встречающийся у здоровых людей. Приводятся некоторые количественные хаpaктеристики микробиоты человека: общее число микроорганизмов, суммарная биомасса, процентное содержание облигатной, факультативной и транзиторной составляющих, время, за которое происходит смена генерации микроорганизмов. Рассматриваются главные системоообразующие факторы, обеспечивающие целостность микробиоты: структурный, метаболический, генетический и информационный. Анализируются взаимоотношения микробиоты и макроорганизма в нормальных физиологических условиях и при патологии. Обсуждаются механизмы развития дисбиозов и патогенетически обоснованные подходы к их коррекции. ...

16 04 2025 17:18:17

Закономерности экспертных оценок рисков сотрудничества в образовании России и Европейского Союза

Закономерности экспертных оценок рисков сотрудничества в образовании России и Европейского Союза Явная неопределенность поведения сферы образования вызывает значимые риски. Во многом они связаны с самими экспертами и их группами, имеющими свои корпоративные интересы. Факторы риска промоделированы по статистическим данным идентификацией устойчивых закономерностей в виде тенденций (трендов) и показана методика анализа. Даны рейтинговые места экспертным оценкам. Анализ закономерностей показал, что в России нужно повышать чувствительность экспертов к реальной действительности, а также к адекватному представлению сценариев долгосрочной перспективы развития. Пока не будет результатов в реформах образования, нечего ждать и формирования инновационной экономики. Ведь из мировой пpaктики известно, цикл пассионарной активности опережает цикл экономического возрождения на 3–5 лет. ...

13 04 2025 12:21:16

СТРУКТУРА ОРГАНИЗАЦИИ «НАЦИОНАЛИСТЫ ИРАНА» К 1942 Г.

СТРУКТУРА ОРГАНИЗАЦИИ «НАЦИОНАЛИСТЫ ИРАНА» К 1942 Г. Статья в формате PDF 95 KB...

02 04 2025 22:48:39

ОПУХОЛИ ЯИЧНИКОВ: ПЕРСПЕКТИВЫ ИММУНОДИАГНОСТИКИ

ОПУХОЛИ ЯИЧНИКОВ: ПЕРСПЕКТИВЫ ИММУНОДИАГНОСТИКИ Статья в формате PDF 112 KB...

01 04 2025 10:21:17

О СТОХАСТИЧЕСКОЙ ГРАМОТНОСТИ ШКОЛЬНИКОВ

О СТОХАСТИЧЕСКОЙ ГРАМОТНОСТИ ШКОЛЬНИКОВ Статья в формате PDF 312 KB...

25 03 2025 5:16:27

ПАРАМЕТР АСИММЕТРИИ ЗОНТООБРАЗНОГО ТЕЛА

ПАРАМЕТР АСИММЕТРИИ ЗОНТООБРАЗНОГО ТЕЛА Измерены коэффициенты аэродинамического сопротивления и параметры асимметрии тонких полых конусообразных тел. ...

24 03 2025 0:25:34

ОСНОВЫ НАДЕЖНОСТИ КОРПОРАТИВНОЙ СЕТИ

ОСНОВЫ НАДЕЖНОСТИ КОРПОРАТИВНОЙ СЕТИ Статья в формате PDF 127 KB...

23 03 2025 0:11:14

ТЕРРИТОРИАЛЬНЫЙ ЭКОЛОГИЧЕСКИЙ БАЛАНС

ТЕРРИТОРИАЛЬНЫЙ ЭКОЛОГИЧЕСКИЙ БАЛАНС Статья в формате PDF 273 KB...

18 03 2025 23:12:19

РОЛЬ КУРСА ОБЖ В ГУМАНИЗАЦИИ ОБЩЕГО ОБРАЗОВАНИЯ

РОЛЬ КУРСА ОБЖ В ГУМАНИЗАЦИИ ОБЩЕГО ОБРАЗОВАНИЯ В процессе воспитания у детей формируется система взглядов на объективный мир, его место в нем, на отношение к окружающей его действительности и самому себе, а также обусловленные этими взглядами жизненные основные позиции, правила поведения в чрезвычайных ситуациях, навыки само и взаимопомощи, ценностные ориентации. Ключевое место в формировании мировоззрения детей занимает в школе предмет основы безопасности жизнедеятельности, призванный стимулировать знания процессов развития личности, формирования и укрепления здоровья, накопление адаптационных ресурсов организма. Содержание курса ОБЖ должно быть направлено на гуманизацию образовательного процесса. Гуманистический подход связан с развитием творческих возможностей человека, созданием реальных безопасных условий для обогащения интеллектуального, эмоционального, волевого и нравственного потенциала личности, стимулированием у нее стремления реализовать себя через активно не адоптированные действия, расширяющие границы самосохранения, саморазвития и самоосуществления. ...

17 03 2025 12:15:36

МЕЛАМИН ВОЛОС И ЗДОРОВЬЕ

МЕЛАМИН ВОЛОС И ЗДОРОВЬЕ Статья в формате PDF 132 KB...

16 03 2025 3:29:22

ЭКСПЕРТНО-ОБУЧАЮЩИЕ СИСТЕМЫ В ОБРАЗОВАНИИ

ЭКСПЕРТНО-ОБУЧАЮЩИЕ СИСТЕМЫ В ОБРАЗОВАНИИ Статья в формате PDF 310 KB...

14 03 2025 13:38:44

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::