ФАЗОВЫЕ ПЕРЕХОДЫ МЕТАНА ПРИ ИЗМЕНЕНИИ ТЕРМОДИНАМИЧЕСКИХ ПАРАМЕТРОВ ГОРНОГО МАССИВА > Полезные советы
Тысяча полезных мелочей    

ФАЗОВЫЕ ПЕРЕХОДЫ МЕТАНА ПРИ ИЗМЕНЕНИИ ТЕРМОДИНАМИЧЕСКИХ ПАРАМЕТРОВ ГОРНОГО МАССИВА

ФАЗОВЫЕ ПЕРЕХОДЫ МЕТАНА ПРИ ИЗМЕНЕНИИ ТЕРМОДИНАМИЧЕСКИХ ПАРАМЕТРОВ ГОРНОГО МАССИВА

Беспятов Г.А. Статья в формате PDF 127 KB

Для построения математической модели фазовых превращений метана примем во внимание, что образование метана в период накопления торфяника и постепенного погребения его под наносы последующих отложений происходило при температурах 150-300oС, когда сорбционная способность угля была близка к нулю. В дальнейшем, в процессе инверсии и понижении температуры, часть метана сорбировалась углем, часть оставалась в свободном состоянии как в трещинах и микропорах угля, так и в коллекторах вмещающих пород. Дальнейшее изменение термодинамических параметров угленосной толщи влекло за собой переход свободного газа в гидратированное состояние. Образование гидратов метана происходит либо при низких температурах (t=12-14 oС) при P=10 МПа, либо при высоком гидростатическом давлении, большем чем в современных условиях. Например, для равновесного состояния гидрата метана. [1]

  .                                       (1)

Образование гидратов в пористой среде при наличии центров кристаллизации имеет объемно-диффузионный хаpaктер. Одним из основных факторов, определяющих условия существования плотных гидратов в пористой среде, является упругость газа в водном растворе, находящемся в контакте с гидратом ρw и в гидрате ρH при заданной температуре. Величина ρH определяется составом гидрата и его температурой. Параметр ρw зависит от растворимости газа в воде при заданных давлении и температуре [2].

Условием существования гидрата является ρw ≥ ρH. Растворимость газа в воде, находящейся в контакте с гидратом, всегда ниже, чем в отсутствии гидрата [2].

Степень газонасыщенности водного раствора, контактирующего с гидратом, определяется диффузионными потоками газа:

а) потоком рассеяния в вышележащих горизонтах или в омывающие воды (Д1);

б) потоком из нижележащих пластов (Д2).

Гидрат не будет диссоциировать при Д2 ≥ Д1. Из этого условия следует, что чем глубже гидросодержащие породы, чем меньше и однороднее поры, тем ниже Д1, а следовательно, тем выше возможность сохранения гидрата.

При изменении горнотехнических условий происходит понижение давления газа ниже давления разложения гидрата при существующей пластовой температуре, т.е. ρw становится меньше ρHw < ρH), что вызывает диссоциацию гидратной фазы, т.е. газ переходит в свободное состояние и существенно изменяет газодинамику угленосной среды.

Для построения математической модели фазовых переходов метана выделим элементарный объем горного массива V, ограниченный поверхностью G. Будем предполагать, что в этом объеме газ находится в трехфазном состоянии (свободном, сорбированном и гидратном). Тогда масса газа, заключенного в этом объеме, в момент времени t будет равен

                     (2)

где ρi - плотность газа в каждой фазе, r(x1,x2,x3) - радиус-вектор элемента объема dV.

В процессе движения из объема V через его границу G в единицу времени вытекает количество свободного газа, равное

               (3)

где ρ1 - плотность свободного газа,

n - единичный вектор внешней нормали к поверхности G.

Тогда баланс газа за время dt будет

                                         (4)

Для течений, не имеющих сильных разрывов, интегральные уравнения заменим дифференциальными, описывающими процесс фазового перехода метана. Понижение давления до величины разложения гидрата определило подвижную границу диссоциации газа .


В зоне I (0 ≤ x ≤ ) произошла десорбция газа и закончилось разложение гидрата и газ перешел в свободное состояние. В зоне II ( ≤ x ≤ ∞) процесс диссоциации еще не наступил и гидратная фаза сохраняется.

В одномерном случае процесс диссоциации описывается следующей краевой задачей:

Здесь  = ρRT соответственно в зонах диссоциации и гидратирования,

D = λU - коэффициент конвективной диффузии, м2/сутки;

λ - параметр дисперсии, M;

γ = ηU - коэффициент гидратирования (диссоциации), сутки-1;

η - константа скорости гидратирования, м-1;

t1 - время окончания первой стадии, сутки.

Введем безразмерные координаты

                               (8)

1. Рассмотрим стадию диссоциации газа в зоне . Задача (5) в обозначениях (8) принимает вид

                              (9)

Решение задачи (9) в виде составного разложения по степеням e имеет вид [3]

                  (10)

Подставляя (10) в (9) и приравнивая члeны при одинаковых степенях e,получим

                               (11)

                (12)

                                   (13)

                             (14)

Решая (11)-(14) методом хаpaктеристик, найдем

                           (15)

Если , то  При  функция  определяется из (12), (13) при конкретном задании функции .


Так как θ1 > θ0(h), то на хаpaктеристике  функция  терпит разрыв, т.е. разложение решения задачи (11) в виде (12) справедливо всюду, за исключением окрестности хаpaктеристики . В работе [3] приведено решение данной задачи в виде

                 (16)

Общее решение, справедливое во всей области фазовых превращений метана, можно получить методом аддитивного составления [3]

                      (17)

Формула (17) справедлива при

При  и  из (17) имеем

                           (18)

При этих условиях точное решение задачи (11) получено в виде

               (19)

Незначительное различие точного (19) и приближенного решения (18) указывает на эффективность приближенных методов для решения данной задачи.

Из анализа полученного решения можно определить подвижную границу диссоциации газа . Граница  движется противоположно направлению фильтрации. При большой скорости ведения горных работ граница  может приближаться к кромке пласта. Для приблизительной оценки величины  предположим, что давление на границе зоны диссоциации совпадает с давлением свободного газа в начальный период разложения гидрата, т.е. , тогда уравнение баланса газа на границе  можно представить в виде

                            (20)

где  определяется по формуле (1). Разделяя переменные в уравнении (20), найдем

                        (21)

Из формулы (21) следует, что гидратное давление  снижается довольно резко до некоторого значения, соответствующего разложению гидрата, что свидетельствует о быстром его разложении и незначительных размерах зоны диссоциации ( ).

Расчеты по формуле (21) показывают, что зона диссоциации находится в зоне упругих деформаций угольного пласта. Этот факт говорит о том, что в этой области происходит начительный рост концентрации газа. Общее количество диссоциированного газа будет

                  (22)

Исходя из формулы состава кристаллогидрата ( ) и с учетом выражения (22) можно определить массу газа и число объемов газа в одном объеме гидрата. Например, для P0=1 МПа, τ=0 оС. Число объемов газа в единице объема гидрата составляет 101,44 кг/м3. Таким образом, один объем гидрата содержит более сотни объемов газа, это свидетельствует о том, что гидраты (особенно метана) отличаются значительными запасами внутренней энергии и высокой концентрацией газа. Следовательно, зоны разложения гидрата являются зонами повышенной газодинамической активности пласта.

СПИСОК ЛИТЕРАТУРЫ:

  1. Веригин Н.Н. О разложении гидрата газа в плате. //МЖГ.- 1982 - №4.-с.171 -173.
  2. Макогон Ю.Ф. Гидраты природных газов.- М.: Недра,1974.
  3. Ван-Дайк М. Методы возмущений в механике жидкости. М., Мир, 1967.


К ВОПРОСУ ЗАКРЫТИЯ РАН ПРИ ОЖИРЕНИИ

К ВОПРОСУ ЗАКРЫТИЯ РАН ПРИ ОЖИРЕНИИ Статья в формате PDF 116 KB...

25 02 2024 2:14:54

Почвенно-растительный мониторинг дельты Волги

Почвенно-растительный мониторинг дельты Волги Статья в формате PDF 127 KB...

15 02 2024 11:20:39

Алгоритм проведения дифференциальной диагностики

Алгоритм проведения дифференциальной диагностики Статья в формате PDF 104 KB...

13 02 2024 5:33:33

МОЛОДЕЖЬ В СОЦИАЛЬНОМ ПРОСТРАНСТВЕ ОБЩЕСТВА

МОЛОДЕЖЬ В СОЦИАЛЬНОМ ПРОСТРАНСТВЕ ОБЩЕСТВА Статья в формате PDF 126 KB...

10 02 2024 17:14:47

СПАМ-ФИЛЬТРЫ И БЛОКИРАТОРЫ

СПАМ-ФИЛЬТРЫ И БЛОКИРАТОРЫ Статья в формате PDF 276 KB...

09 02 2024 5:51:50

СТРУКТУРА ИНТЕЛЛЕКТУАЛЬНЫХ СПОСОБНОСТЕЙ ЧЕЛОВЕКА

СТРУКТУРА ИНТЕЛЛЕКТУАЛЬНЫХ СПОСОБНОСТЕЙ ЧЕЛОВЕКА Статья в формате PDF 149 KB...

05 02 2024 11:36:45

THE ROLE OF LEGUMINOUS CULTURES IN HUSBANDRY BIOLOGIZATION

THE ROLE OF LEGUMINOUS CULTURES IN HUSBANDRY BIOLOGIZATION Статья в формате PDF 241 KB...

04 02 2024 17:17:17

ПРОДОЛЖИТЕЛЬНОЕ ПРЕБЫВАНИЕ В УСЛОВИЯХ НЕВЕСОМОСТИ И ЕЕ ВЛИЯНИЕ НА МЕХАНИЧЕСКИЕ СВОЙСТВА ТРЕХГЛАВОЙ МЫШЦЫ ГОЛЕНИ У ЧЕЛОВЕКА: ЭЛЕКТРОМЕХАНИЧЕСКАЯ ЗАДЕРЖКА И МЫШЕЧНО-СУХОЖИЛЬНАЯ ЖЕСТКОСТЬ

ПРОДОЛЖИТЕЛЬНОЕ ПРЕБЫВАНИЕ В УСЛОВИЯХ НЕВЕСОМОСТИ И ЕЕ ВЛИЯНИЕ НА МЕХАНИЧЕСКИЕ СВОЙСТВА ТРЕХГЛАВОЙ МЫШЦЫ ГОЛЕНИ У ЧЕЛОВЕКА: ЭЛЕКТРОМЕХАНИЧЕСКАЯ ЗАДЕРЖКА И МЫШЕЧНО-СУХОЖИЛЬНАЯ ЖЕСТКОСТЬ Исследовали влияние продолжительного пребывания в условиях невесомости на механические свойства и электромеханическую задержку (ЭМЗ) трехглавой мышцы голени (ТМГ) у 7 космонавтов до полета и на 3-5 день после возвращения на Землю. Механические свойства ТМГ оценивали по показателям максимальной произвольной силы (МПС), максимальной силы (Ро; частота 150 имп/с), силы одиночного сокращения (Рос), времени одиночного сокращения (ВОС), времени полурасслабления (1/2 ПР), времени развития напряжения до уровня 25, 50, 75 и 90% от максимума. Рассчитывали силовой дефицит (Рд) и тетанический индекс (ТИ). ЭМЗ регистрировали во время произвольного и непроизвольного сокращения ТМГ. В ответ на световой сигнал космонавт выполнял произвольное подошвенное сгибание при условии «сократить как можно быстро и сильно». Определяли общее время реакции (ОВР), премоторное время (ПМВ) и моторное время (МТ) или иначе ЭМЗ. В ответ на супрамаксимальный одиночный электрический импульс, приложенный к n. tibialis, определяли латентный период между М-ответом и началом развития Рос. После полета Рос, МПС и Ро уменьшились на 14,8; 41,7 и 25.6%, соответственно. Величина Рд и ТИ увеличилась на 49,7 и 46,7%, соответственно. ВОС увеличилось на 7,7%, а время 1/2 ПР уменьшилось – на 20,6%. Время развития произвольного изометрического сокращения значительно увеличилось, тогда как электрически вызванное сокращение не обнаружило существенных различий. ЭМЗ произвольного сокращения увеличилась на 34,1%, а ПМВ и ОВР уменьшились на 19,0 и 14,1%, соответственно. ЭМЗ электрически вызванного сокращения существенно не изменилось. Таким образом, механические изменения предполагают, что невесомость изменяет не только периферические процессы, связанные с сокращениями, но изменяет также и центрально-нервную комaнду. ЭМЗ при вызванном одиночном сокращении простой и быстрый метод оценки изменения жесткости мышцы. Более того, ЭМЗ при вызванном одиночном сокращении мышцы может служить показателем функционального состояния нервно-мышечного аппарата, а соотношение ЭМЗ при произвольном и вызванном сокращениях показателем функционального состояния центральной нервной системы. ...

01 02 2024 10:39:59

ОПЫТ НЕМЕДИКАМЕНТОЗНОЙ ТЕРАПИИ САХАРНОГО ДИАБЕТА

ОПЫТ НЕМЕДИКАМЕНТОЗНОЙ ТЕРАПИИ САХАРНОГО ДИАБЕТА Статья в формате PDF 91 KB...

30 01 2024 7:26:51

ВЛИЯНИЕ ПРИРОДЫ АЛКИЛЬНЫХ ГРУПП У АММОНИЕВОГО АЗОТА НА РЕГИОХИМИЮ ЩЕЛОЧНОГО РАСЩЕПЛЕНИЯ 1,4-БИСАММОНИЕВЫХ СОЛЕЙ С 2,3-ДИБРОМБУТ-2-ЕНИЛЕНОВОЙ ОБЩЕЙ ГРУППОЙ

ВЛИЯНИЕ ПРИРОДЫ АЛКИЛЬНЫХ ГРУПП У АММОНИЕВОГО АЗОТА НА РЕГИОХИМИЮ ЩЕЛОЧНОГО РАСЩЕПЛЕНИЯ 1,4-БИСАММОНИЕВЫХ СОЛЕЙ С 2,3-ДИБРОМБУТ-2-ЕНИЛЕНОВОЙ ОБЩЕЙ ГРУППОЙ Исследовано водно- и спирто-щелочное расщепление 1,4-бис (диметилэтил-, диэтилметил и диметилфенацил)-2,3-дибромбут-2-ениленаммоний дигалоген-идов. Показано, что в отличие от их триметильного аналога, во всех случаях расщепление протекает в довольно жестких условиях (высокие температуры, избыток щелочи), с образованием сложной смеси продуктов. ...

27 01 2024 14:28:30

PROSPECTS OF THE COAL INDUSTRY IN KUZBASS

PROSPECTS OF THE COAL INDUSTRY IN KUZBASS Статья в формате PDF 358 KB...

24 01 2024 2:10:12

ОБЩАЯ БИОЛОГИЯ ЦИРКУЛЯЦИОННОЙ СИСТЕМЫ У ЧЕЛОВЕКА

ОБЩАЯ БИОЛОГИЯ ЦИРКУЛЯЦИОННОЙ СИСТЕМЫ У ЧЕЛОВЕКА Статья в формате PDF 295 KB...

18 01 2024 6:30:16

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::