Теорема о количестве и структуре особых точек n–мерной динамической системы популяционной динамики Лотки-Вольтерра в контексте информационного анализа и моделирования
1 ФГБОУ ВО «Воронежский государственный педагогический университет» С помощью элементарных методов комбинаторной математики и единственности решений систем линейных алгебраических уравнений для невырожденных случаев доказана теорема о количестве и структуре особых точек n–мерной динамической системы популяционной динамики Лотки-Вольтерра. Показано, что количество особых точек для этой системы равняется 2n, а их структура в отношении сочетания нулевых и ненулевых координат совпадает с биноминальными коэффициентами. Сделано предположение, что с помощью этой динамической системы можно моделировать конкурентные взаимодействия среди n научных фронтов в рамках широкой области научных исследований. Статья в формате PDF 372 KB модель Лотки-Вольтеррапопуляционная динамикаколичество особых точекбиноминальные коэффициентырешения систем линейных алгебраических уравнений 1. Вольтерра В. Математическая теория борьбы за существование. – М.: Наука, 1976. – 286 с. 2. Lotka A.J. Elements of Physical Biology. – Baltimore: Williams and Wilkins, 1925. 3. Николис Г., Пригожин И. Самоорганизация в неравновесных системах: от диссипативных структур к упорядоченности через флуктуации. – М.: Мир, 1979. – 512 с. 4. May R.M. Simple Mathematical Models with Very Complicated Dynamics // Nature. – 1976. – Vol. 261. – P. 459–467. 5. Goh B.S. Stability in models of mutualism // The American Naturalist. – 1979. – Vol. 113, № 2. – P. 261–274. 6. Lu Z., Takeuchi Y. Qualitative Stability and Global Stability for Lotka-Volterra Systems // J. of Mathematical ***ysis and Applications. – 1994. – Vol. 182, № 1. – P. 260–268. 7. Московкин В.М., Журавка А.В. Моделирование конкурентно-кооперационных взаимодействий: (контекст уравнений популяционной динамики в социально-экономических системах) // Бизнес Информ. – Харьков, 2002. – № 5–6. – С. 27–34. 8. Московкин В.М., Журавка А.В., Михайлов В.С. Расчет сценариев конкурентных, кооперационных и смешанных стратегий для n-мерной модели конкурентно-кооперационных взаимодействий в социально-экономических системах // Экономическая кибернетика. – Донецк, 2004. – № 5–6 (29–30). – С. 32–34. 9. Московкин В.М., Билаль Н.Е. Сулейман, Голиков Н.А. Математическая модель взаимодействия результатов различных видов НИОКР // Научно-техническая информация. Сер. 2. – 2011. – № 2. – С. 13–17.
Многомерная модель популяционной динамики Лотки-Вольтерра была предложена Вито Вольтерра в работе [1], но так как параллельно такого рода уравнения в биофизической и химической кинетике развивал А. Лотка [2], то за уравнениями популяционной динамики закрепились фамилии обоих ученых. К изучению данной модели обращались такие крупные ученые как Г. Николис и И. Пригожин [3], Р. Мэй [4] и др. При рассмотрении этой модели ученые, в основном, изучали хаpaктер устойчивости нетривиальной особой точки. Например, Б. Гох [5] при изучении моделей мутуализма показал, что необходимым и достаточным условием для локальной и глобальной устойчивости нетривиальной особой точки модели Лотки-Вольтерра является положительность всех ведущих (главных) миноров матрицы Якоби для этой модели. Позднее З. Лу и Е. Такеучи [6] доказали ряд теорем по глобальной устойчивости системы уравнений Лотки-Вольтерра. В работах по экономической динамике [7, 8] было замечено, что n-мерная система уравнений популяционной динамики Лотки-Вольтерра имеет 2n особых точек, но до сих пор доказательства этому представлено не было. Возможность использования таких уравнений в информационном анализе и моделировании взаимодействий результатов различных видов НИОКР показана в работе [9]. Исходная n-мерная модель Лотки-Вольтерра, на наш взгляд, может быть использована при моделировании конкурентных взаимодействий n научных фронтов в рамках широкой области научных исследований, при которых будут наблюдаться разнообразные варианты подавления одних научных фронтов другими, а также их сосуществования. Ниже будет сформулирована и доказана теорема о количестве и структуре особых точек n-мерной модели Лотки-Вольтерра.
Основная часть
Теорема. Количество особых точек n-мерной системы нелинейных обыкновенных дифференциальных уравнений Лотки-Вольтера с положительными коэффициентами и невырожденными случаями систем линейных алгебраических уравнений, возникающих при определении координат особых точек, равняется 2n, а их структура в отношении сочетания нулевых и ненулевых координат совпадает с биномиальными коэффициентами.
Доказательство. Будем рассматривать систему уравнений Лотки-Вольтера в виде
(1)
Для удобства доказательства теоремы перепишем правые части этой системы уравнений, приравненные к нулю, в виде:
(2)
Будем рассматривать невырожденные случаи решения линейных систем алгебраических уравнений, которые имеют единственные решения.
Из системы уравнений (2) сразу же выделяются две особые точки – нулевая и нетривиальная (ненулевая), которая является решением n-мерной системы линейных алгебраических уравнений, стоящих в скобках исходной системы (2). С точки зрения комбинаторной математики, этим особым точкам соответствуют следующие сочетания:
нулей из n переменных;
нулей из n переменных.
В первом случае мы имеем единственную нулевую особую точку, во втором – единственную ненулевую особую точку.
Далее, количество особых точек с сочетанием одной нулевой координаты из n переменных равняется , количество особых точек с сочетанием двух нулевых координат из n переменных равняется , количество особых точек с сочетанием i нулевых координат из n переменных равняется , количество особых точек с сочетанием (n – 1) нулевых координат из n переменных равняется . Следовательно, общее количество особых точек равняется
Таким образом, показано, что общее количество особых точек равняется 2n, а их структура в отношении сочетания нулевых и ненулевых координат повторяет последовательную совокупность коэффициентов в биноме Ньютона.
В этом доказательстве подразумевается следующее положение. Когда мы берем все особые точки с нулевыми координатами в количестве i, то оставшиеся системы линейных алгебраических уравнений (n – i)-порядка имеют единственные решения (невырожденные случаи).
Заключение
Для n-мерной системы уравнений популяционной динамики, предложенной в работах В. Вольтера и А. Лотки еще в середине 20-х годов прошлого века, до сих пор не была доказана теорема о количестве и структуре особых точек этой классической системы уравнений. В данной работе такая теорема была доказана с помощью элементарных методов комбинаторной математики и единственности решений систем линейных алгебраических уравнений для невырожденных случаев. С точки зрения информационного анализа и моделирования информационных процессов и систем, следует отметить, что динамическая система (1) может, в принципе, моделировать процесс конкурентных взаимодействий n научных фронтов в рамках широкой области научных исследований. Тогда в такой системе могут наблюдаться 2n вариантов исходов таких взаимодействий из которых 2n–2 будут связаны с подавлением одних научных фронтов другими, которые окажутся более конкурентоспособными.
12 12 2024 7:50:59
Статья в формате PDF 127 KB...
10 12 2024 10:14:32
Статья в формате PDF 266 KB...
09 12 2024 0:36:48
Статья в формате PDF 146 KB...
08 12 2024 4:41:21
Статья в формате PDF 120 KB...
07 12 2024 0:34:34
Статья в формате PDF 315 KB...
06 12 2024 19:19:57
Статья в формате PDF 112 KB...
04 12 2024 13:54:40
Статья в формате PDF 101 KB...
02 12 2024 22:42:52
Статья в формате PDF 105 KB...
01 12 2024 8:44:23
Статья в формате PDF 110 KB...
30 11 2024 3:20:47
Статья в формате PDF 217 KB...
29 11 2024 19:21:31
Статья в формате PDF 115 KB...
28 11 2024 10:54:56
Статья в формате PDF 100 KB...
27 11 2024 21:55:15
Статья в формате PDF 105 KB...
26 11 2024 10:22:55
Важнейшим фактором поддержания селенового статуса организма является феномен эндогенного регулирования, который проявляется как в здоровом организме, так и при различных заболеваниях. Клинические исследования гинекологических больных с гнойно-воспалительными заболеваниями позволили установить, что снижение иммунной защиты организма часто сопровождается снижением уровня селена в сыворотке крови. Обследовано 46 больных (18-37 лет). Бактериологическое типирование подтвердило присутствие: Chlamidia trachomonatis; Ureaplasma urealiticum; St. epidermidis; грам (-) флоры; грам (+) флоры; смешанной флоры; E. Colli; дрожжевых клеток; трихомонад. Интервал концентрации селена в сыворотке крови составил 32,0-89,5мкг/л. Средний показатель 64,8 ± 6,3 мкг/л (при норме 115-120 мкг/л). Показатель уровня селена в сыворотке крови доноров г.Пензы составил 81,0 ± 11,7 мкг/л. Была проведена оценка влияния селенодефицита на течение и прогноз эндотоксикоза. Таким образом, авторегулирование антиоксидантного гомеостаза в организме можно рассматривать как функцию иммунитета, а воздействие фармакологических препаратов как один из методов регулирования селенового статуса населения. ...
25 11 2024 14:17:33
Статья в формате PDF 145 KB...
24 11 2024 15:17:26
Статья в формате PDF 250 KB...
22 11 2024 14:18:11
Статья в формате PDF 118 KB...
21 11 2024 22:34:30
Статья в формате PDF 293 KB...
19 11 2024 15:59:18
Статья в формате PDF 126 KB...
17 11 2024 0:24:26
Статья в формате PDF 174 KB...
16 11 2024 9:42:56
Статья в формате PDF 133 KB...
15 11 2024 0:34:57
Статья в формате PDF 272 KB...
14 11 2024 14:20:56
Статья в формате PDF 118 KB...
13 11 2024 7:20:51
Статья в формате PDF 112 KB...
12 11 2024 1:24:24
Статья в формате PDF 104 KB...
11 11 2024 8:20:29
Статья в формате PDF 204 KB...
10 11 2024 4:10:42
Статья в формате PDF 113 KB...
08 11 2024 13:41:59
Статья в формате PDF 129 KB...
07 11 2024 13:56:47
06 11 2024 6:39:31
Статья в формате PDF 120 KB...
05 11 2024 2:58:33
Статья в формате PDF 202 KB...
03 11 2024 7:46:39
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::