Теорема о количестве и структуре особых точек n–мерной динамической системы популяционной динамики Лотки-Вольтерра в контексте информационного анализа и моделирования

1 ФГБОУ ВО «Воронежский государственный педагогический университет» С помощью элементарных методов комбинаторной математики и единственности решений систем линейных алгебраических уравнений для невырожденных случаев доказана теорема о количестве и структуре особых точек n–мерной динамической системы популяционной динамики Лотки-Вольтерра. Показано, что количество особых точек для этой системы равняется 2n, а их структура в отношении сочетания нулевых и ненулевых координат совпадает с биноминальными коэффициентами. Сделано предположение, что с помощью этой динамической системы можно моделировать конкурентные взаимодействия среди n научных фронтов в рамках широкой области научных исследований. Статья в формате PDF 372 KB модель Лотки-Вольтеррапопуляционная динамикаколичество особых точекбиноминальные коэффициентырешения систем линейных алгебраических уравнений 1. Вольтерра В. Математическая теория борьбы за существование. – М.: Наука, 1976. – 286 с. 2. Lotka A.J. Elements of Physical Biology. – Baltimore: Williams and Wilkins, 1925. 3. Николис Г., Пригожин И. Самоорганизация в неравновесных системах: от диссипативных структур к упорядоченности через флуктуации. – М.: Мир, 1979. – 512 с. 4. May R.M. Simple Mathematical Models with Very Complicated Dynamics // Nature. – 1976. – Vol. 261. – P. 459–467. 5. Goh B.S. Stability in models of mutualism // The American Naturalist. – 1979. – Vol. 113, № 2. – P. 261–274. 6. Lu Z., Takeuchi Y. Qualitative Stability and Global Stability for Lotka-Volterra Systems // J. of Mathematical ***ysis and Applications. – 1994. – Vol. 182, № 1. – P. 260–268. 7. Московкин В.М., Журавка А.В. Моделирование конкурентно-кооперационных взаимодействий: (контекст уравнений популяционной динамики в социально-экономических системах) // Бизнес Информ. – Харьков, 2002. – № 5–6. – С. 27–34. 8. Московкин В.М., Журавка А.В., Михайлов В.С. Расчет сценариев конкурентных, кооперационных и смешанных стратегий для n-мерной модели конкурентно-кооперационных взаимодействий в социально-экономических системах // Экономическая кибернетика. – Донецк, 2004. – № 5–6 (29–30). – С. 32–34. 9. Московкин В.М., Билаль Н.Е. Сулейман, Голиков Н.А. Математическая модель взаимодействия результатов различных видов НИОКР // Научно-техническая информация. Сер. 2. – 2011. – № 2. – С. 13–17.
Многомерная модель популяционной динамики Лотки-Вольтерра была предложена Вито Вольтерра в работе [1], но так как параллельно такого рода уравнения в биофизической и химической кинетике развивал А. Лотка [2], то за уравнениями популяционной динамики закрепились фамилии обоих ученых. К изучению данной модели обращались такие крупные ученые как Г. Николис и И. Пригожин [3], Р. Мэй [4] и др. При рассмотрении этой модели ученые, в основном, изучали хаpaктер устойчивости нетривиальной особой точки. Например, Б. Гох [5] при изучении моделей мутуализма показал, что необходимым и достаточным условием для локальной и глобальной устойчивости нетривиальной особой точки модели Лотки-Вольтерра является положительность всех ведущих (главных) миноров матрицы Якоби для этой модели. Позднее З. Лу и Е. Такеучи [6] доказали ряд теорем по глобальной устойчивости системы уравнений Лотки-Вольтерра. В работах по экономической динамике [7, 8] было замечено, что n-мерная система уравнений популяционной динамики Лотки-Вольтерра имеет 2n особых точек, но до сих пор доказательства этому представлено не было. Возможность использования таких уравнений в информационном анализе и моделировании взаимодействий результатов различных видов НИОКР показана в работе [9]. Исходная n-мерная модель Лотки-Вольтерра, на наш взгляд, может быть использована при моделировании конкурентных взаимодействий n научных фронтов в рамках широкой области научных исследований, при которых будут наблюдаться разнообразные варианты подавления одних научных фронтов другими, а также их сосуществования. Ниже будет сформулирована и доказана теорема о количестве и структуре особых точек n-мерной модели Лотки-Вольтерра.
Основная часть
Теорема. Количество особых точек n-мерной системы нелинейных обыкновенных дифференциальных уравнений Лотки-Вольтера с положительными коэффициентами и невырожденными случаями систем линейных алгебраических уравнений, возникающих при определении координат особых точек, равняется 2n, а их структура в отношении сочетания нулевых и ненулевых координат совпадает с биномиальными коэффициентами.
Доказательство. Будем рассматривать систему уравнений Лотки-Вольтера в виде
(1)
Для удобства доказательства теоремы перепишем правые части этой системы уравнений, приравненные к нулю, в виде:
(2)
Будем рассматривать невырожденные случаи решения линейных систем алгебраических уравнений, которые имеют единственные решения.
Из системы уравнений (2) сразу же выделяются две особые точки – нулевая и нетривиальная (ненулевая), которая является решением n-мерной системы линейных алгебраических уравнений, стоящих в скобках исходной системы (2). С точки зрения комбинаторной математики, этим особым точкам соответствуют следующие сочетания:
нулей из n переменных;
нулей из n переменных.
В первом случае мы имеем единственную нулевую особую точку, во втором – единственную ненулевую особую точку.
Далее, количество особых точек с сочетанием одной нулевой координаты из n переменных равняется , количество особых точек с сочетанием двух нулевых координат из n переменных равняется , количество особых точек с сочетанием i нулевых координат из n переменных равняется , количество особых точек с сочетанием (n – 1) нулевых координат из n переменных равняется . Следовательно, общее количество особых точек равняется
Таким образом, показано, что общее количество особых точек равняется 2n, а их структура в отношении сочетания нулевых и ненулевых координат повторяет последовательную совокупность коэффициентов в биноме Ньютона.
В этом доказательстве подразумевается следующее положение. Когда мы берем все особые точки с нулевыми координатами в количестве i, то оставшиеся системы линейных алгебраических уравнений (n – i)-порядка имеют единственные решения (невырожденные случаи).
Заключение
Для n-мерной системы уравнений популяционной динамики, предложенной в работах В. Вольтера и А. Лотки еще в середине 20-х годов прошлого века, до сих пор не была доказана теорема о количестве и структуре особых точек этой классической системы уравнений. В данной работе такая теорема была доказана с помощью элементарных методов комбинаторной математики и единственности решений систем линейных алгебраических уравнений для невырожденных случаев. С точки зрения информационного анализа и моделирования информационных процессов и систем, следует отметить, что динамическая система (1) может, в принципе, моделировать процесс конкурентных взаимодействий n научных фронтов в рамках широкой области научных исследований. Тогда в такой системе могут наблюдаться 2n вариантов исходов таких взаимодействий из которых 2n–2 будут связаны с подавлением одних научных фронтов другими, которые окажутся более конкурентоспособными.
Статья в формате PDF
307 KB...
16 11 2025 6:41:11
Статья в формате PDF
153 KB...
15 11 2025 3:37:20
Статья в формате PDF
253 KB...
14 11 2025 16:12:20
Статья в формате PDF
101 KB...
13 11 2025 10:59:45
Статья в формате PDF
113 KB...
12 11 2025 4:55:33
Статья в формате PDF
133 KB...
10 11 2025 15:20:28
Статья в формате PDF
283 KB...
08 11 2025 5:26:24
Статья в формате PDF
152 KB...
07 11 2025 20:58:43
06 11 2025 11:18:16
Статья в формате PDF
312 KB...
03 11 2025 17:11:59
Статья в формате PDF
263 KB...
02 11 2025 6:36:46
Статья в формате PDF
590 KB...
01 11 2025 9:38:15
Представлены результаты двухлетних опытных работ с целью разработки эффективных способов биологической рекультивации без нанесения плодородного слоя на отвалах Айхальского ГОКа.
...
31 10 2025 15:50:41
Статья в формате PDF
111 KB...
30 10 2025 7:59:17
29 10 2025 6:37:46
Статья в формате PDF
136 KB...
28 10 2025 5:19:52
Статья в формате PDF
200 KB...
27 10 2025 3:36:35
Статья в формате PDF
127 KB...
26 10 2025 1:37:10
Статья в формате PDF
138 KB...
25 10 2025 22:35:22
Статья в формате PDF
267 KB...
24 10 2025 3:10:39
Статья в формате PDF
142 KB...
23 10 2025 7:54:11
Статья в формате PDF 127 KB...
22 10 2025 15:37:57
Статья в формате PDF
100 KB...
21 10 2025 3:52:24
Статья в формате PDF
358 KB...
20 10 2025 14:26:22
В статье приведен комплексный анализ антропогенного воздействия на природную среду Иркутской области, приводящего к изменению не только количественных, но и качественных хаpaктеристик природной среды как системы. В частности, приведена общая экологическая ситуация, указывающая на значительное загрязнение и качественные изменения во всех компонентах окружающей среды: в почве, атмосферном воздухе, водных ресурсах. Комплексная химическая нагрузка влияет также на медико-демографические показатели здоровья населения. Необходим переход от технократического подхода к технологическому, что позволит избежать дальнейшей деградации природной системы. В качестве универсальной, независимой от экономической ситуации, единицы оценки экологического риска предложено использовать время. Основанная на современных представлениях о времени технология позволит установить границы антропогенного воздействия на природную систему, а так же рассчитать предполагаемый ущерб, наносимый природной системе каким-либо видом воздействия, выявить области с наложением различных типов воздействий, рассчитать совокупный ущерб в границах таких областей, и, следовательно, разработать комплекс превентивных мер для исключения качественных изменений природной среды.
...
19 10 2025 4:55:19
Статья в формате PDF
158 KB...
18 10 2025 16:45:23
Статья в формате PDF
131 KB...
17 10 2025 14:28:22
Статья в формате PDF
199 KB...
16 10 2025 6:10:28
Статья в формате PDF
129 KB...
15 10 2025 13:45:28
Статья в формате PDF
118 KB...
13 10 2025 23:17:10
Статья в формате PDF
109 KB...
12 10 2025 17:18:50
Статья в формате PDF
103 KB...
11 10 2025 8:47:51
Статья в формате PDF
101 KB...
10 10 2025 3:10:56
Статья в формате PDF
116 KB...
09 10 2025 19:44:46
Статья в формате PDF 110 KB...
08 10 2025 1:11:33
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::