ПРИКЛАДНОЕ ЗНАЧЕНИЕ СРАВНИМОСТИ ЧИСЕЛ В КРИПТОГРАФИИ > Полезные советы
Тысяча полезных мелочей    

ПРИКЛАДНОЕ ЗНАЧЕНИЕ СРАВНИМОСТИ ЧИСЕЛ В КРИПТОГРАФИИ

ПРИКЛАДНОЕ ЗНАЧЕНИЕ СРАВНИМОСТИ ЧИСЕЛ В КРИПТОГРАФИИ

Посевкин Р.В. Светличная В.Б. Статья в формате PDF 851 KB

Сравнения нашли широкое применение в криптографии и шифровании. Один из наглядных примеров - алгоритмы ассиметричного шифрования. Основная идея асимметричного шифрования заключается в существовании сразу двух ключей для обмена информацией - открытого, известного любому желающему, и закрытого, который известен лишь получателю информации. Очевидно, что открытый и закрытый ключи генерируются одновременно и между ними существует определенная математическая связь. Основная задача проектировщика асимметричного алгоритма заключается в том, чтобы по известному открытому ключу было бы невозможно (очень трудоемко) получить секретный ключ шифрования. Для этого в основу асимметричных алгоритмов закладываются вычислительно трудные задачи факторизации, дискретного логарифмирования, проецирования точек на эллиптической кривой и т.д. Объединяет все эти задачи то, что они используют операцию получения остатка от целочисленного деления (сравнения). Говорят, что два целых числа a и b являются сравнимыми по модулю n, если (a mod n)  =  (b mod n). Это записывается в виде:

a ≡ b mod n.

В качестве примера алгоритмов симметричного шифрования можно привести первую систему с открытым ключом - метод экспоненциального ключевого обмена Диффи - Хеллмана. Метод предназначен для передачи секретного ключа симметричного шифрования. В обмене задействованы два участника А и Б. Сначала они выбирают большие простые числа n и g < n (эти числа секретными не являются). Затем участник A выбирает большое целое число х, вычисляет Х = gx mod n и передает Х участнику Б. Б в свою очередь выбирает большое целое число y, вычисляет Y = gy mod n и передает Y участнику А. Б вычисляет K´ = Xy mod n, А вычисляет K´´ = Yx mod n. Легко заметить, что K´ = K´´ = gxy mod n, и это значение оба участника могут использовать в качестве ключа симметричного шифрования. Злоумышленник может узнать такие параметры алгоритма, как n, g, X, Y, но вычислить по ним значения x или y - задача, требующая очень больших вычислительных мощностей и времени.

Примером действительно асимметричного алгоритма шифрования, основанного на проблеме дискретного логарифма, является алгоритм Эль-Гемаля. Последовательность действий при генерации ключей, шифровании и дешифрации представлена на рис. 1.

Рис. 1. Схема шифрования алгоритма Эль-Гемаля

Так как ax  gkx mod p, то имеем:

. (1)

Самым первым, действительно асимметричным алгоритмом стал алгоритм RSA. В основу криптостойкости RSA положена задача факторизации (разложения на множители) больших (более 200 двоичных разрядов) целых чисел.

Процедуры генерации ключей, шифрования и дешифрования для этого алгоритма представлены на рис. 2.

Рис. 2. Схема шифрования алгоритма RSA

На этапе генерации ключей формируется пара ключей: закрытый d и открытый e. Шифрование данных должно начинаться с его разбиения на блоки m размером k = [log2 (n)] бит каждое, чтобы блок m можно было рассматривать как целое число в диапазоне [0.. n - 1]. Обратимость операции шифрования и дешифрования RSA требует доказательства. Из теоремы Эйлера известно, что для двух целых чисел n и x, таких, что (n,x) = 1, выполняется:

xj(n) ≡ 1 mod n, (2)

где j(n) - функция Эйлера, значение которой равно количеству чисел меньших n и взаимно простых с ним. Для n = pq из алгоритма RSA, где p и q - простые числа, можно записать j(n) = (p - 1)(q - 1).

Тогда (1) можно переписать в виде:

x(p - 1)(q - 1) ≡ 1 mod n. (3)

Возведем обе части (3) в степень - y:

x(-y)(p - 1)(q - 1) º 1(-y) mod n ≡ 1 mod n. (4)

Умножим обе части (4) на x:

x(-y)(p - 1)(q - 1) +1 mod n = x. (5)

Но при генерации ключей мы получили e и d такие, что ed º 1 mod (p - 1)(q - 1), а это означает, что в (5) можно заменить 1 - y(p - 1)(q - 1) на ed:

xed mod n = x. (6)

Тогда, если мы возведем шифротекста c = me mod n в степень d по модулю n, как мы это и делаем при дешифровании, то получим:

(cd ) mod n = (me mod n)d mod n = med mod n = m. (7)

Очевидно, что основная задача криптоаналитика при взломе этого шифра - узнать закрытый ключ d. Для этого он должен выполнить те же действия, что и получатель при генерации ключа - решить в целых числах уравнение ed + y (p - 1)(q - 1) = 1 относительно d и y. Однако, если получателю известны входящие в уравнение параметры p и q, то криптоаналитик знает только число n - произведение p и q. Следовательно, ему необходимо произвести факторизацию числа n, то есть разложить его на множители. Для решения задачи факторизации к настоящему времени разработано множество алгоритмов: квадратичного решета, обобщенного числового решета, метод эллиптических кривых. Но для чисел большой размерности это очень трудоемкая задача.

Список литературы

1. Методы и средства защиты компьютерной информации: учебное пособие / Д.Н. Лясин, С.Г. Саньков - РПК «Политехник», 2005.



ИННОВАЦИОННЫЙ МЕТОД В ТИРЕОИДОЛОГИИ

ИННОВАЦИОННЫЙ МЕТОД В ТИРЕОИДОЛОГИИ Статья в формате PDF 93 KB...

22 09 2022 12:26:35

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ УРОВНЯ ПСИХИЧЕСКОЙ РЕАКЦИИ ЧЕЛОВЕКА И ЕЁ ИССЛЕДОВАНИЕ

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ УРОВНЯ ПСИХИЧЕСКОЙ РЕАКЦИИ ЧЕЛОВЕКА И ЕЁ ИССЛЕДОВАНИЕ В статье описывается математическая модель, связывающая уровень психической реакции с личностными хаpaктеристиками человека и с силой информационного воздействия на него. Исследуются условия устойчивости модели методами теории автоматического управления. ...

15 09 2022 17:59:51

ОШИБКИ ПРИ ВЫЧИСЛЕНИИ РАБОТЫ

ОШИБКИ ПРИ ВЫЧИСЛЕНИИ РАБОТЫ Работу вычисляют по формуле: dA=FdS  или A=FS. Но эта формула применима только для силы вызывающей изменение кинетической энергии тела. Для других сил (трения, упругой деформации, центростремительных) работу нужно вычислять по формуле: , где  - импульс силы. ...

14 09 2022 16:58:42

ПРАВОСЛАВИЕ И&#8239;РАСКОЛ (ПО ПРОИЗВЕДЕНИЯМ ВЛАДИМИРА ЛИЧУТИНА «РАСКОЛ» И&#8239;«СКИТАЛЬЦЫ»)

ПРАВОСЛАВИЕ И&#8239;РАСКОЛ (ПО ПРОИЗВЕДЕНИЯМ ВЛАДИМИРА ЛИЧУТИНА «РАСКОЛ» И&#8239;«СКИТАЛЬЦЫ») В работе рассматривается русский религиозный раскол, отраженный в творчестве Владимира Личутина, исследуются причины, истоки и последствия этой трагедии, разьявшей общество на две непримиримые стороны в XVII веке, который, по мнению автора, продолжается и поныне. Показано развитие национального самосознания нации, на которое влияют этнические приоритеты. Они обусловлены коллективной идентичностью на базе общности «крови и почвы», его едином историческом прошлом, территории, религиозными воззрениями этнос. Повествователь является посредником между изображенным и читателем, нередко выступая в роли свидетеля и истолкователя показанных лиц и событий. Ключевые слова: раскол, православие, Никон, царь Алексей Михайлович, Беловодье ...

13 09 2022 10:10:51

СХЕМА РАЗВИТИЯ УМЕНИЙ И НАВЫКОВ

СХЕМА РАЗВИТИЯ УМЕНИЙ И НАВЫКОВ Статья в формате PDF 148 KB...

06 09 2022 9:52:11

ВЛИЯНИЕ РАЗНООБРАЗИЯ ВИДОВ ТРАВЯНЫХ РАСТЕНИЙ НА РАСПРЕДЕЛЕНИЕ ПРОДУКТИВНОСТИ ПОЙМЕННОГО ЛУГА

ВЛИЯНИЕ РАЗНООБРАЗИЯ ВИДОВ ТРАВЯНЫХ РАСТЕНИЙ НА РАСПРЕДЕЛЕНИЕ ПРОДУКТИВНОСТИ ПОЙМЕННОГО ЛУГА Цель статьи — выявление закономерностей влияния топографических и почвенных условий прирусловых территорий на прострaнcтвенную структуру видового состава трав и продуктивность пойменных лугов. ...

28 08 2022 6:36:20

Деринат-отечественный природный иммуномодулятор

Деринат-отечественный природный иммуномодулятор Статья в формате PDF 109 KB...

22 08 2022 0:25:41

БЕЛКИ ЭРИТРОЦИТОВ. МИНИОБЗОР

БЕЛКИ ЭРИТРОЦИТОВ. МИНИОБЗОР В миниобзоре приведены сведения об основных результатах исследования эритроцитарных белков. Обсуждается строение и функции комплексов белка 4.1.R и белка 3 полосы, результаты исследованиябелков – трaнcпортеров, включая роль аквапорина 1 в трaнcпорте двуокиси углерода. Обсуждается представления о механизме Gárdos эффекта в эритроцитах. Приведены сведения об интеpaктоме белков цитозоля эритроцитов. Обсуждаются вопросы развития окислительного стресса в эритроцитах включая, роль белка пероксиредоксина 2. Показано участие гемоглобина в механизмах старения эритроцитов. ...

18 08 2022 17:35:58

КОНТРОЛЬ КАЧЕСТВА ЗНАНИЙ СТУДЕНТОВ

КОНТРОЛЬ КАЧЕСТВА ЗНАНИЙ СТУДЕНТОВ Статья в формате PDF 103 KB...

17 08 2022 18:11:41

ЛЖЕУЧЕНИЯ И ПАРАНАУКА ХХ ВЕКА Часть 1

ЛЖЕУЧЕНИЯ  И  ПАРАНАУКА  ХХ  ВЕКА Часть 1 Проведен анализ общепринятых учений и научных теорий, имевших широкую аудиторию в вузах и научно-исследовательских институтах прошлого века. Выявлена недостаточность абстpaктной потенции в мыслительной жизни homo sensus, главная альтернатива которой – эмоциональный мир, чувственность и вера. Свойство верить познающего субъекта не носит хаpaктер религиозности, однако имеет общие с ней основания. Роднит религию и научную веру стремление не понять, а принять смутные представления, сулящие сиюминутную пользу и выгоду, объединяет желание увидеть в таинственном и запредельном нечто к себе доброжелательное, освобождающее от мучительного предназначения думать и, следовательно, уводящее от необходимости работать – работать без самообмана, но эффективно и достойно homo sapiens. ...

15 08 2022 3:12:45

ПОЧЕМУ КУРЯТ СТУДЕНТЫ?

ПОЧЕМУ КУРЯТ СТУДЕНТЫ? Статья в формате PDF 131 KB...

13 08 2022 15:43:14

Маркетинг в деятельности многопрофильной больницы

Маркетинг в деятельности многопрофильной больницы Статья в формате PDF 117 KB...

10 08 2022 22:40:20

ИЗУЧЕНИЕ МЕХАНИЗМА ПЕРЕДАЧИ ИНФОРМАЦИИ В НЕРВНО-МЫШЕЧНОМ СИНАПСЕ

ИЗУЧЕНИЕ МЕХАНИЗМА ПЕРЕДАЧИ ИНФОРМАЦИИ В НЕРВНО-МЫШЕЧНОМ СИНАПСЕ Понимание физико-химической природы генерации нервного сигнала, путей передачи информации с одной нервной клетки на другую или на мышечную клетку позволит вплотную подойти к объяснению механизма деятельности нервной системы. Нервные клетки передают информацию с помощью сигналов, представляющие собой электрические токи, генерируемой поверхностной мембраной нейрона. Эти токи возникают благодаря движению зарядов, принадлежащих ионам натрия, калия, кальция и хлора. ...

06 08 2022 21:43:38

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::