О МОДЕЛИРОВАНИИ КОНТАКТНО-КОНДЕНСАЦИОННЫХ ПРОЦЕССОВ НА МЕЗОУРОВНЕ НЕСТАБИЛЬНОЙ СИЛИКАТНОЙ СИСТЕМЫ > Полезные советы
Тысяча полезных мелочей    

О МОДЕЛИРОВАНИИ КОНТАКТНО-КОНДЕНСАЦИОННЫХ ПРОЦЕССОВ НА МЕЗОУРОВНЕ НЕСТАБИЛЬНОЙ СИЛИКАТНОЙ СИСТЕМЫ

О МОДЕЛИРОВАНИИ КОНТАКТНО-КОНДЕНСАЦИОННЫХ ПРОЦЕССОВ НА МЕЗОУРОВНЕ НЕСТАБИЛЬНОЙ СИЛИКАТНОЙ СИСТЕМЫ

Сидоренко Ю.В. Статья в формате PDF 131 KB

Формирование композиционных материалов с регулируемой структурой и, в частности, силикатных материалов, изготовленных по безавтоклавной (контактно-конденсационной) технологии, является актуальной задачей современного строительного материаловедения. Научно-исследовательские работы по контактно-конденсационному твердению силикатных материалов указывают на целесообразность развития данной технологии [1, 2 и др.]. Однако сложность пpaктической реализации, связанная с процессами, происходящими в области высокодисперсных фаз, требует проведения детальных исследований в вопросах подготовки "капсул" с нестабильными гидросиликатами кальция, поддержания их нестабильных свойств на технологических переделах до окончательного формирования прочного водостойкого сырца изделия. Несмотря на имеющийся научный материал, недостаточно изучены физико-химические процессы в деформируемой нестабильной системе. Данная работа ставит задачей разработку модели образования силовой связи  между структурными элементами в нестабильной системе гидросиликатного типа, что позволит:

  • получить теоретическое обоснование выбранных технологических параметров в процессе прессования рассматриваемой системы;
  • выявить закономерности и пути оптимизации формирования структуры материала известково-кремнеземистого типа.

Формирование необратимого контакта в сырце силикатного изделия по контактно-конденсационной технологии ранее было представлено, как процесс перераспределения нестабильной фазы по объему деформируемой системы [2]. Ключевыми элементами рассматриваемого процесса являются "капсулы" с нестабильным вяжущим, которые формируются на стадии смешивания нестабильной известково-кремнеземистой смеси с кварцевым заполнителем, и перед деформацией располагаются в объемных областях системы. Классификация межчастичных областей ("горл") между структурными элементами (СЭ) позволила выявить подмножество размеров "горл", при прохождении через которое образуется необратимый силовой контакт. На уровне макромодели силовой необратимый каркас рассматривается с точки зрения синергетики как процесс образования бесконечного кластера из силовых звеньев конденсационного типа. Конкурирующим процессом является потокораспределение вяжущего из узлов - истоков по сетке Бете. Ранее была предложена математическая модель описания деформируемой системы на макроуровне с привлечением уравнений гидродинамики, как к многофазному континууму [2]. Предварительный анализ проблемы указывает на возникновение гидродинамической неустойчивости в межчастичной зоне, что связано с различной скоростью возникновения конденсационной фазы в критическом сечении между СЭ. Здесь просматривается аналогия с устойчивостью тонких пленок по моделям  В.Г. Бабака и др. В некотором диапазоне перепадов давлений возможно существование разных расходов вяжущей фазы.  Критический случай в виде нулевого расхода соответствует запиранию "горла" и возникновению конденсационного мостика между СЭ. Механизм формирования контактно-конденсационной перемычки можно рассматривать на:

- начальном периоде, отличающемся случайностью и многообразием факторов, влияющих на зарождение перемычки;

- квазистационарном периоде, связанном с продвижением фронта перколяции по длине "горла";

- заключительном периоде, связанном с уменьшением расхода несущей фазы в связи с ростом гидравлического сопротивления.

Новизна предлагаемых решений заключается в том, что зона формирования контакта рассматривается по длине, как многослойная система с различными  реологическими хаpaктеристиками. Данные математической модели позволят обосновать методику выбора технологических параметров (время прессования, величина и динамика набора прочности сырца силикатного изделия) в инженерном проектировании безавтоклавных силикатных материалов, в частности, возможность определить скорость перемещения подвижного фронта перколяции, оценить ширину контактирующей зоны между СЭ.

В рамках гранта, финансируемого Министерством образования и науки Самарской области в 2006 г., наименование НИР: "Моделирование механизма твердения нестабильного силикатного вяжущего на мезоуровне системы" (раздел - 364Т3.13 П).

СПИСОК ЛИТЕРАТУРЫ:

  1. 1. Глуховский В.Д., Рунова Р.Ф., Максунов С.Е. Вяжущие и композиционные материалы контактного твердения. // Киев: Вища школа, 1991.
  2. Сидоренко Ю.В. Моделирование процессов контактно-конденсационного твердения низкоосновных гидросиликатов кальция: Дисс. ...  канд. техн. наук.- Самара, 2003. -   217 с.

Работа представлена на заочную электронную конференцию «Новые технологии, инновации, изобретения», 15-20 июля 2006 г.



НАРКОМАНИЯ И ВИЧ-ИНФЕКЦИЯ

НАРКОМАНИЯ И ВИЧ-ИНФЕКЦИЯ Статья в формате PDF 264 KB...

25 04 2024 15:44:16

МОДЕЛИРОВАНИЕ КВАЗИФРАКТАЛЬНЫХ КОНФИГУРАЦИЙ МЕЖФАЗНЫХ ГРАНИЦ МЕТОДОМ ИТЕРАЦИИ ТРЕУГОЛЬНЫХ ГЕНЕРАТОРОВ КОХА НА 2D СЕТКАХ

МОДЕЛИРОВАНИЕ КВАЗИФРАКТАЛЬНЫХ КОНФИГУРАЦИЙ МЕЖФАЗНЫХ ГРАНИЦ МЕТОДОМ ИТЕРАЦИИ ТРЕУГОЛЬНЫХ ГЕНЕРАТОРОВ КОХА НА 2D СЕТКАХ Обсуждены методика и некоторые результаты моделирования вероятных конфигураций межфазных границ на поверхности композиционных материалов, полученные методом итерации треугольных генераторов на определенных сетках Кеплера-Шубникова. ...

19 04 2024 8:16:35

ЗИНЧЕНКО СЕРГЕЙ ИВАНОВИЧ

ЗИНЧЕНКО СЕРГЕЙ ИВАНОВИЧ Статья в формате PDF 75 KB...

10 04 2024 15:29:41

ВЫБОР СПОСОБА ОБРАБОТКИ ДЕТАЛЕЙ ГИДРОУДАРНИКА

ВЫБОР СПОСОБА ОБРАБОТКИ ДЕТАЛЕЙ ГИДРОУДАРНИКА Статья в формате PDF 284 KB...

06 04 2024 7:17:56

СИСТЕМА Tl2S-Tl2Te-Tl9SbTe6 И СРАВНИТЕЛЬНЫЙ АНАЛИЗ ФАЗОВЫХ ДИАГРАММ РОДСТВЕННЫХ СИСТЕМ

СИСТЕМА Tl2S-Tl2Te-Tl9SbTe6 И СРАВНИТЕЛЬНЫЙ АНАЛИЗ ФАЗОВЫХ ДИАГРАММ РОДСТВЕННЫХ СИСТЕМ Методами ДТА и РФА исследованы фазовые равновесия в системе Tl2S-Tl2Te-Tl9SbTe6 (А). Построены политермическое сечение Tl2S-Tl9SbTe6 и изотермическое сечение при 400К фазовой диаграммы, а также проекция поверхности ликвидуса системы А. Установлено, что она является квазитройным фрагментом четверной системы Tl-Sb-S-Te и хаpaктеризуется образованием широких областей твердых растворов на основе исходных соединений. Поверхность ликвидуса системы А состоит из трех полей, отвечающих первичной кристаллизации твердых растворов на основе соединений Tl2S, Tl2Te и Tl9SbTe6. В работе также обсуждены особенности фазовых равновесий в аналогичных системах и, в частности, показано, что все шесть систем данного типа хаpaктеризуются образованием твердых растворов на основе исходных соединений, причем наиболее широкие области гомогенности имеют соединения типа Tl9BVX6. ...

26 03 2024 8:54:52

Результаты обследования КД при заболеваниях глотки

Статья в формате PDF 122 KB...

22 03 2024 19:50:39

СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИДАКТИКИ ВЫСШЕЙ ШКОЛЫ

СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИДАКТИКИ ВЫСШЕЙ ШКОЛЫ Статья в формате PDF 164 KB...

19 03 2024 6:11:42

ИНФОРМАЦИОННЫЙ АНАЛИЗ БИОЛОГИЧЕСКОЙ ЖИДКОСТИ

ИНФОРМАЦИОННЫЙ АНАЛИЗ БИОЛОГИЧЕСКОЙ  ЖИДКОСТИ Статья в формате PDF 111 KB...

17 03 2024 22:51:46

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::