О МОДЕЛИРОВАНИИ КОНТАКТНО-КОНДЕНСАЦИОННЫХ ПРОЦЕССОВ НА МЕЗОУРОВНЕ НЕСТАБИЛЬНОЙ СИЛИКАТНОЙ СИСТЕМЫ > Полезные советы
Тысяча полезных мелочей    

О МОДЕЛИРОВАНИИ КОНТАКТНО-КОНДЕНСАЦИОННЫХ ПРОЦЕССОВ НА МЕЗОУРОВНЕ НЕСТАБИЛЬНОЙ СИЛИКАТНОЙ СИСТЕМЫ

О МОДЕЛИРОВАНИИ КОНТАКТНО-КОНДЕНСАЦИОННЫХ ПРОЦЕССОВ НА МЕЗОУРОВНЕ НЕСТАБИЛЬНОЙ СИЛИКАТНОЙ СИСТЕМЫ

Сидоренко Ю.В. Статья в формате PDF 131 KB

Формирование композиционных материалов с регулируемой структурой и, в частности, силикатных материалов, изготовленных по безавтоклавной (контактно-конденсационной) технологии, является актуальной задачей современного строительного материаловедения. Научно-исследовательские работы по контактно-конденсационному твердению силикатных материалов указывают на целесообразность развития данной технологии [1, 2 и др.]. Однако сложность пpaктической реализации, связанная с процессами, происходящими в области высокодисперсных фаз, требует проведения детальных исследований в вопросах подготовки "капсул" с нестабильными гидросиликатами кальция, поддержания их нестабильных свойств на технологических переделах до окончательного формирования прочного водостойкого сырца изделия. Несмотря на имеющийся научный материал, недостаточно изучены физико-химические процессы в деформируемой нестабильной системе. Данная работа ставит задачей разработку модели образования силовой связи  между структурными элементами в нестабильной системе гидросиликатного типа, что позволит:

  • получить теоретическое обоснование выбранных технологических параметров в процессе прессования рассматриваемой системы;
  • выявить закономерности и пути оптимизации формирования структуры материала известково-кремнеземистого типа.

Формирование необратимого контакта в сырце силикатного изделия по контактно-конденсационной технологии ранее было представлено, как процесс перераспределения нестабильной фазы по объему деформируемой системы [2]. Ключевыми элементами рассматриваемого процесса являются "капсулы" с нестабильным вяжущим, которые формируются на стадии смешивания нестабильной известково-кремнеземистой смеси с кварцевым заполнителем, и перед деформацией располагаются в объемных областях системы. Классификация межчастичных областей ("горл") между структурными элементами (СЭ) позволила выявить подмножество размеров "горл", при прохождении через которое образуется необратимый силовой контакт. На уровне макромодели силовой необратимый каркас рассматривается с точки зрения синергетики как процесс образования бесконечного кластера из силовых звеньев конденсационного типа. Конкурирующим процессом является потокораспределение вяжущего из узлов - истоков по сетке Бете. Ранее была предложена математическая модель описания деформируемой системы на макроуровне с привлечением уравнений гидродинамики, как к многофазному континууму [2]. Предварительный анализ проблемы указывает на возникновение гидродинамической неустойчивости в межчастичной зоне, что связано с различной скоростью возникновения конденсационной фазы в критическом сечении между СЭ. Здесь просматривается аналогия с устойчивостью тонких пленок по моделям  В.Г. Бабака и др. В некотором диапазоне перепадов давлений возможно существование разных расходов вяжущей фазы.  Критический случай в виде нулевого расхода соответствует запиранию "горла" и возникновению конденсационного мостика между СЭ. Механизм формирования контактно-конденсационной перемычки можно рассматривать на:

- начальном периоде, отличающемся случайностью и многообразием факторов, влияющих на зарождение перемычки;

- квазистационарном периоде, связанном с продвижением фронта перколяции по длине "горла";

- заключительном периоде, связанном с уменьшением расхода несущей фазы в связи с ростом гидравлического сопротивления.

Новизна предлагаемых решений заключается в том, что зона формирования контакта рассматривается по длине, как многослойная система с различными  реологическими хаpaктеристиками. Данные математической модели позволят обосновать методику выбора технологических параметров (время прессования, величина и динамика набора прочности сырца силикатного изделия) в инженерном проектировании безавтоклавных силикатных материалов, в частности, возможность определить скорость перемещения подвижного фронта перколяции, оценить ширину контактирующей зоны между СЭ.

В рамках гранта, финансируемого Министерством образования и науки Самарской области в 2006 г., наименование НИР: "Моделирование механизма твердения нестабильного силикатного вяжущего на мезоуровне системы" (раздел - 364Т3.13 П).

СПИСОК ЛИТЕРАТУРЫ:

  1. 1. Глуховский В.Д., Рунова Р.Ф., Максунов С.Е. Вяжущие и композиционные материалы контактного твердения. // Киев: Вища школа, 1991.
  2. Сидоренко Ю.В. Моделирование процессов контактно-конденсационного твердения низкоосновных гидросиликатов кальция: Дисс. ...  канд. техн. наук.- Самара, 2003. -   217 с.

Работа представлена на заочную электронную конференцию «Новые технологии, инновации, изобретения», 15-20 июля 2006 г.



ТЕХНОЛОГИЯ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ

ТЕХНОЛОГИЯ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ Статья в формате PDF 108 KB...

26 02 2024 8:15:58

ВОЗМОЖНОСТИ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ ДОБРОКАЧЕСТВЕННЫХ И ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ ОПОРНО-ДВИГАТЕЛЬНОЙ СИСТЕМЫ С ПОМОЩЬЮ МЕТОДОВ ИНФРАКРАСНОЙ СПЕКТРОСКОПИИ ПЛАЗМЫ КРОВИ

ВОЗМОЖНОСТИ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ ДОБРОКАЧЕСТВЕННЫХ И ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ ОПОРНО-ДВИГАТЕЛЬНОЙ СИСТЕМЫ С ПОМОЩЬЮ МЕТОДОВ ИНФРАКРАСНОЙ СПЕКТРОСКОПИИ ПЛАЗМЫ КРОВИ Целью исследования является оценка возможности ранней дифференциальной диагностики доброкачественных и злокачественных опухолей опopно-двигательной системы с помощью инфpaкрасной спектроскопии плазмы крови. При этом бралась венозная кровь из локтевой вены у контрольной группы пациентов с заранее установленным диагнозом существующими методами, после чего выделялась плазма. Исследуемая плазма крови помещалась в жидкостную кювету. Спустя 1,5-2 часа исследуемая кювета помещалась в ИК–Фурье- спектрометр. Снимался спектр пропускания плазма крови. Вычислялся коэффициент пропускания по данным снятых спектров. Затем рассчитывались коэффициенты объемного поглощения. В процессе экспериментов нами был вычислен статистически значимый уровень β = 700 см–1, ниже которого находились значения, соответствующие доброкачественным опухолям, выше- злокачественным опухолям. ...

23 02 2024 10:34:45

THE ROLE OF LEGUMINOUS CULTURES IN HUSBANDRY BIOLOGIZATION

THE ROLE OF LEGUMINOUS CULTURES IN HUSBANDRY BIOLOGIZATION Статья в формате PDF 241 KB...

22 02 2024 11:40:52

ТОПОГРАФИЯ ЛИМФАТИЧЕСКИХ ПОСТКАПИЛЛЯРОВ

ТОПОГРАФИЯ ЛИМФАТИЧЕСКИХ ПОСТКАПИЛЛЯРОВ Лимфатические посткапилляры проходят от метаболических блоков с лимфатическими капиллярами до лимфатических сосудов первого порядка в контурном пучке микрорайона микроциркуляторного русла, чаще около собирательных венул или на разном удалении от них. ...

16 02 2024 19:55:16

БИОЛОГИЧЕСКАЯ РОЛЬ СОЕДИНЕНИЙ МАРГАНЦА

БИОЛОГИЧЕСКАЯ РОЛЬ СОЕДИНЕНИЙ МАРГАНЦА Статья в формате PDF 251 KB...

11 02 2024 2:46:24

ПРОКОПЕНКО ПЁТР ГЕОРГИЕВИЧ

ПРОКОПЕНКО ПЁТР ГЕОРГИЕВИЧ Статья в формате PDF 318 KB...

09 02 2024 0:16:49

ПЯТИСТЕРЖНЕВАЯ ФЕРМА СЛОЖНОГО ТИПА

ПЯТИСТЕРЖНЕВАЯ ФЕРМА СЛОЖНОГО ТИПА Статья в формате PDF 300 KB...

08 02 2024 10:29:12

ОСОБЕННОСТИ УПЛОТНЯЕМОСТИ ДВУХФАЗНЫХ ПОРОШКОВЫХ КОМПОЗИЦИЙ

ОСОБЕННОСТИ УПЛОТНЯЕМОСТИ ДВУХФАЗНЫХ ПОРОШКОВЫХ КОМПОЗИЦИЙ В настоящей работе исследована зависимость плотности прессовок на железной, медной и никелевой с различными углерод содержащими порошковыми наполнителями от давления статического прессования. Для всех изучаемых двухфазных порошковых смесей, и для каждой стадии прессования рассчитаны постоянные уплотняемости. Физический смысл постоянных в предложенной работе выяснен. Для каждой стадии прессования определен интервал плотности в зависимости от химического и концентрационного составов порошковой смеси. В работе, приведены данные уплотняемости порошкового тела при приложении давлении прессования в условиях статической нагрузки, используя которые можно объяснить процессы, наблюдаемые в процессе уплотнения порошка. Оценка уплотняемости порошков позволяет составить более эффективную технологию изготовления порошковых изделий с заданными значениями плотности. ...

03 02 2024 21:45:57

МЕТАФОРИЧНОСТЬ ОБРАЗОВ В УРАЛЬСКОМ ФОЛЬКЛОРЕ

МЕТАФОРИЧНОСТЬ ОБРАЗОВ В УРАЛЬСКОМ ФОЛЬКЛОРЕ Статья в формате PDF 113 KB...

25 01 2024 3:52:21

СОВРЕМЕННЫЕ ТЕНДЕНЦИИ РАЗВИТИЯ ХИМИЧЕСКИХ НАУК

СОВРЕМЕННЫЕ ТЕНДЕНЦИИ РАЗВИТИЯ ХИМИЧЕСКИХ НАУК Статья в формате PDF 173 KB...

24 01 2024 2:47:31

К СТРАТЕГИИ ОБРАЗОВАНИЯ XXI ВЕКА

К СТРАТЕГИИ ОБРАЗОВАНИЯ XXI ВЕКА Статья в формате PDF 154 KB...

20 01 2024 14:34:28

Степень риска при воздействии диоксинов

Степень риска при воздействии диоксинов Статья в формате PDF 114 KB...

19 01 2024 23:27:46

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::