О МОДЕЛИРОВАНИИ КОНТАКТНО-КОНДЕНСАЦИОННЫХ ПРОЦЕССОВ НА МЕЗОУРОВНЕ НЕСТАБИЛЬНОЙ СИЛИКАТНОЙ СИСТЕМЫ
Формирование композиционных материалов с регулируемой структурой и, в частности, силикатных материалов, изготовленных по безавтоклавной (контактно-конденсационной) технологии, является актуальной задачей современного строительного материаловедения. Научно-исследовательские работы по контактно-конденсационному твердению силикатных материалов указывают на целесообразность развития данной технологии [1, 2 и др.]. Однако сложность пpaктической реализации, связанная с процессами, происходящими в области высокодисперсных фаз, требует проведения детальных исследований в вопросах подготовки "капсул" с нестабильными гидросиликатами кальция, поддержания их нестабильных свойств на технологических переделах до окончательного формирования прочного водостойкого сырца изделия. Несмотря на имеющийся научный материал, недостаточно изучены физико-химические процессы в деформируемой нестабильной системе. Данная работа ставит задачей разработку модели образования силовой связи между структурными элементами в нестабильной системе гидросиликатного типа, что позволит:
- получить теоретическое обоснование выбранных технологических параметров в процессе прессования рассматриваемой системы;
- выявить закономерности и пути оптимизации формирования структуры материала известково-кремнеземистого типа.
Формирование необратимого контакта в сырце силикатного изделия по контактно-конденсационной технологии ранее было представлено, как процесс перераспределения нестабильной фазы по объему деформируемой системы [2]. Ключевыми элементами рассматриваемого процесса являются "капсулы" с нестабильным вяжущим, которые формируются на стадии смешивания нестабильной известково-кремнеземистой смеси с кварцевым заполнителем, и перед деформацией располагаются в объемных областях системы. Классификация межчастичных областей ("горл") между структурными элементами (СЭ) позволила выявить подмножество размеров "горл", при прохождении через которое образуется необратимый силовой контакт. На уровне макромодели силовой необратимый каркас рассматривается с точки зрения синергетики как процесс образования бесконечного кластера из силовых звеньев конденсационного типа. Конкурирующим процессом является потокораспределение вяжущего из узлов - истоков по сетке Бете. Ранее была предложена математическая модель описания деформируемой системы на макроуровне с привлечением уравнений гидродинамики, как к многофазному континууму [2]. Предварительный анализ проблемы указывает на возникновение гидродинамической неустойчивости в межчастичной зоне, что связано с различной скоростью возникновения конденсационной фазы в критическом сечении между СЭ. Здесь просматривается аналогия с устойчивостью тонких пленок по моделям В.Г. Бабака и др. В некотором диапазоне перепадов давлений возможно существование разных расходов вяжущей фазы. Критический случай в виде нулевого расхода соответствует запиранию "горла" и возникновению конденсационного мостика между СЭ. Механизм формирования контактно-конденсационной перемычки можно рассматривать на:
- начальном периоде, отличающемся случайностью и многообразием факторов, влияющих на зарождение перемычки;
- квазистационарном периоде, связанном с продвижением фронта перколяции по длине "горла";
- заключительном периоде, связанном с уменьшением расхода несущей фазы в связи с ростом гидравлического сопротивления.
Новизна предлагаемых решений заключается в том, что зона формирования контакта рассматривается по длине, как многослойная система с различными реологическими хаpaктеристиками. Данные математической модели позволят обосновать методику выбора технологических параметров (время прессования, величина и динамика набора прочности сырца силикатного изделия) в инженерном проектировании безавтоклавных силикатных материалов, в частности, возможность определить скорость перемещения подвижного фронта перколяции, оценить ширину контактирующей зоны между СЭ.
В рамках гранта, финансируемого Министерством образования и науки Самарской области в 2006 г., наименование НИР: "Моделирование механизма твердения нестабильного силикатного вяжущего на мезоуровне системы" (раздел - 364Т3.13 П).
СПИСОК ЛИТЕРАТУРЫ:
- 1. Глуховский В.Д., Рунова Р.Ф., Максунов С.Е. Вяжущие и композиционные материалы контактного твердения. // Киев: Вища школа, 1991.
- Сидоренко Ю.В. Моделирование процессов контактно-конденсационного твердения низкоосновных гидросиликатов кальция: Дисс. ... канд. техн. наук.- Самара, 2003. - 217 с.
Работа представлена на заочную электронную конференцию «Новые технологии, инновации, изобретения», 15-20 июля 2006 г.
Статья в формате PDF
128 KB...
10 02 2025 15:52:32
Статья в формате PDF
126 KB...
09 02 2025 7:57:34
Статья в формате PDF
107 KB...
08 02 2025 5:19:24
Статья в формате PDF
111 KB...
07 02 2025 21:15:10
06 02 2025 5:43:43
Статья в формате PDF
252 KB...
05 02 2025 11:29:51
Цели исследования: определить нормальную динамику показателей вариабельности ритма сердца в ответ на физиологическую нагрузку у мужчин и женщин. Дать клинико-физиологическую оценку показателей.
Материалы и методы. Нами было обследованы 48 здоровых пациентов, из них 32 – мужчины, 16 – женщины. Средний возраст 46 (± 3,6) года. Исследование проводилось на комплексе суточного мониторирования ЭКГ «ДНК» с программой вариабельности сердечного ритма при проведении лестничных проб. Определяли: ЧСС ночью и на нагрузке, депрессию ST, параметры ОНЧ, НЧ, ВЧ, НЧ/ВЧ – как в покое, так и на нагрузке, SDNN и pNN50 за сутки.
Результаты. Обнаружено, что на нагрузках значительно повышается мощность ОНЧ (на 80,4%, t – 2,6) и синнергично снижается мощность НЧ (на 72%, t – 1,7) и ВЧ (на 65%, t – 1,6). Пoлoвых различий не выявлено (t – 0,8).
Заключение: показатель «ОНЧ» отражает реализацию синусовым узлом симпатических влияний. «ВЧ» отражают активность парасимпатической нервной системы (что соответствует литературным данным). Показатель «Низкие Частоты» не может служить маркером активности симпатической системы (как предлагается в литературе), а скорее отвечает за реализацию вагуса или иной тормозящей структуры. НЧ/ВЧ не может служить показателем вегетативного баланса.
...
04 02 2025 22:59:46
Анализ опыта по восстановлению методом агростепей растительности на нарушенных кормовых угодьях долины средней Лены показал, что метод при соблюдении экологических условий и видового состава участков обеспечивает восстановление растительности, проявляющееся в повышении проективного покрытия и доминировании в травостое целинных видов. Соответствие экологических условий и видового состава травостоя при подборе участков обеспечивает восстановление растительности нарушенных участков до 70–75 % и доминирование в травостое целинных видов до 60–65 % в условиях нормального и сильного засоления.
...
03 02 2025 6:14:31
Статья в формате PDF
115 KB...
01 02 2025 9:36:50
Статья в формате PDF
122 KB...
31 01 2025 12:27:34
Статья в формате PDF
172 KB...
30 01 2025 1:45:15
Статья в формате PDF
161 KB...
28 01 2025 13:23:20
Статья в формате PDF
105 KB...
27 01 2025 8:36:56
Статья в формате PDF
263 KB...
26 01 2025 12:17:31
Статья в формате PDF
251 KB...
25 01 2025 14:35:23
Статья в формате PDF
104 KB...
24 01 2025 21:46:52
Статья в формате PDF
115 KB...
22 01 2025 17:47:59
Статья в формате PDF
115 KB...
20 01 2025 18:19:33
Статья в формате PDF
351 KB...
19 01 2025 10:24:35
Статья в формате PDF
173 KB...
17 01 2025 1:25:56
Статья в формате PDF
127 KB...
16 01 2025 19:20:27
Статья в формате PDF
108 KB...
14 01 2025 16:31:20
13 01 2025 5:23:52
Статья в формате PDF
132 KB...
12 01 2025 14:44:27
11 01 2025 10:58:48
10 01 2025 4:59:15
Статья в формате PDF
113 KB...
09 01 2025 11:19:19
Статья в формате PDF
134 KB...
08 01 2025 18:23:31
Статья в формате PDF
500 KB...
06 01 2025 17:23:45
Статья в формате PDF
144 KB...
05 01 2025 19:59:51
Статья в формате PDF
114 KB...
04 01 2025 9:26:34
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::