РЕГУЛИРУЕМЫЙ ГИДРОДИНАМИЧЕСКИЙ ПРИВОД ДЛЯ ТРАНСПОРТНОЙ МАШИНЫ
Такое качественное совершенствование особенно необходимо для приводов трaнcпортных машин (ТМ), работающих в напряженных условиях, когда установившиеся режимы работы привода пpaктически отсутствуют. Но процессы гидроторможения и реверса требуют регулирования привода как по частоте вращения входного вала, так и по степени наполнения полости пускового ГТР рабочей жидкостью.
При таких режимах работы хаpaктеристики ГТР могут быть определены только экспериментально с использованием критериев Эйлера Рейнольдса Фруда
Как показали результаты экспериментального исследования ГТР Т522 [1], при гидроторможении в режиме противовращения турбинного и насосного колес хаpaктеристики моментов колес могут быть определены с использованием одного, основополагающего критерия Эйлера в виде зависимости для коэффициентов моментов
где ρ - плотность рабочей жидкости; ωн , r2н угловая частота и радиус выхода насосного колеса; Ра - давление в рабочей полости ГТР.
По критериям Рейнольдса и Фруда режимы работы ГТР оказались автомодельными.
Таким образом, хаpaктеристика тормозного момента МТ на турбинном колесе ГТР и колесах ТМ может быть получена различным сочетанием частот вращения насосного nн , турбинного nТ колес и давления Ра жидкости в рабочей полости ГТР. Это означает регулирование степени наполнения рабочей полости ГТР в зависимости от частоты вращения вала двигателя и (или) скорости движения ТМ. Такое регулирование должно быть достаточно экономичным и эффективным в смысле получения высоких значений момента МТ , но исключающих перетор-маживание и юз колес ТМ.
В современном трaнcпортном машиностроении используются гидродинамические приводы (турборедукторы фирмы Voith) мощностью 250...1170 кВт, обеспечивающие гидроторможение при скоростях до 40 км/ч. В них пусковые ГТР переднего и заднего хода снабжены расположенными снаружи сливными клапанами. Эти клапаны либо не регулируются и ограничивают только максимальное давление Ра max в полости ГТР, либо регулируются в зависимости от скорости движения ТМ (частоты nT вращения турбинного колеса), а частота nн вращения несоосного колеса (вала двигателя) остается постоянной при гидроторможении (Патент ФРГ №1755916 кл. В61Н 11/06), [2].
По авторскому свидетельству СССР №500099 М. кл2 В61С 9/18, с целью упрощения конструкции и повышения экономичности гидроторможения, пусковые ГТР переднего и заднего хода снабжены позиционными устройствами, которые связаны со сливными клапанами и контроллером двигателя. Открытие сливных клапанов зависит только от позиции контроллера, т.е. от частоты вращения вала двигателя (насосного колеса ГТР).
Такая неизменная и односторонняя зависимость открытия сливных клапанов снижает степень наполнения полости ГТР рабочей жидкостью и экономичность гидроторможения. Возможен также перегрев рабочей жидкости.
Универсальным, более эффективным и надежным является устройство для регулирования тормозной мощности по АС СССР №996245 М. кл2 В61С 9/18, В61Н 11/06. В нем при регулировании тормозной мощности взаимодействуют все три параметра nн , nT, Pa : при высоких скоростях движения ТМ сразу же значительно снижается частота nн вращения насосного колеса и открывается большое сечение сливного клапана, уменьшающее давление Ра в полости ГТР. С уменьшением в процессе гидроторможения частоты nT вращения турбинного колеса (скорости ТМ) работа устройства происходит в обратном направлении - уменьшается сечение слива клапана и увеличивается частота пн вращения насосного колеса ГТР (вала двигателя). Корректировка сечения сливных клапанов переводит работу ГТР на большие значения давления Ра и более высокую экономичность при всех скоростях движения ТМ. Кроме того, параметры процесса подбираются так, чтобы обеспечить расположение тормозных хаpaктеристик в зоне, близкой к ограничению тормозной мощности по теплоотводу и по сцеплению колес ТМ, что повышает надежность работы ТМ.
Развитием такого способа регулирования процесса гидроторможения является его применение в гидрореверсивной передаче с блоками пускового и маршевого ГТР для каждого направления движения ТМ (АС СССР (19) SU (11) 1579818 А1 (51)5 В61С 9/00, 9/18).
С целью реализации устройства регулирования тормозной мощности были использованы экспериментальные зависимости для коэффициентов моментов на колесах ГТР Т522.
На рисунке величина пропорциональна критерию Эйлера и составляет .
Полученные зависимости позволяют рассчитать тормозную хаpaктеристику ТМ и определить параметры ее регулирования.
СПИСОК ЛИТЕРАТУРЫ:
- Тресков Ю.П., Малясов В.В. Хаpaктеристики двухступенчатого гидротрaнcформатора в режиме противовращения. «Вестник машиностроения», 1973, №10.
- Keller Rolf. Das Turbowendegetriebe, eine Vollhydraulische Losung aller Aufgaben einer Rangier - Lokomotive. «Motortechnishe Zeitschrift», 32, №6, 1971.
Статья в формате PDF
119 KB...
09 12 2023 9:28:15
Статья в формате PDF
220 KB...
08 12 2023 3:19:40
Статья в формате PDF
150 KB...
07 12 2023 21:38:44
Статья в формате PDF
269 KB...
06 12 2023 20:35:31
Статья в формате PDF
125 KB...
05 12 2023 1:55:40
04 12 2023 10:56:54
Закономерности изменения различных физико-химических констант органических соединений (А) в гомологических рядах идентичны и могут быть описаны простейшим линейным рекуррентным соотношением А(n+1) = aA(n) + b, связывающим их значения с величинами соответствующих констант для предыдущих гомологов.
...
03 12 2023 19:54:13
Статья в формате PDF
285 KB...
02 12 2023 5:33:50
01 12 2023 8:44:28
Статья в формате PDF
119 KB...
30 11 2023 10:54:37
Статья в формате PDF
117 KB...
28 11 2023 3:28:43
Статья в формате PDF
267 KB...
27 11 2023 12:44:29
Статья в формате PDF
110 KB...
26 11 2023 3:13:50
Известные значения констант диссоциации одного из самых распространенных природных флавоноидов – кверцетина – отличаются крайней невоспроизводимостью. Одной из причин этого следует считать легкое окисление кверцетина в процессе титрования кислородом воздуха. Для устранения этого эффекта предложен модифицированный вариант потенциометрического титрования с барботированием инертного газа (азот) через титруемый раствор с добавкой в него неионогенного детергента. Полученное таким способом значение pKaI кверцетина равно 6.62 ± 0.04. Из этого следует принципиально важный вывод: в нейтральной среде (при рН ~ 7) кверцетин и, возможно, другие флавонолы, пpaктически полностью диссоциированы.
...
25 11 2023 13:58:38
Статья в формате PDF
213 KB...
22 11 2023 0:30:18
Статья в формате PDF
108 KB...
21 11 2023 19:54:39
Статья в формате PDF
119 KB...
20 11 2023 5:38:43
Статья в формате PDF
118 KB...
19 11 2023 13:46:59
Статья в формате PDF
131 KB...
18 11 2023 2:54:52
Статья в формате PDF
114 KB...
17 11 2023 2:11:32
Статья в формате PDF
113 KB...
16 11 2023 1:21:27
Статья в формате PDF
103 KB...
15 11 2023 16:18:37
Статья в формате PDF
353 KB...
14 11 2023 5:34:12
В статье описаны эксперименты по изучению влияния основных факторов среды на жизнедеятельность жабронога стрептоцефалюса. Установлено, что наиболее оптимальная температура воды для роста и развития рачка и созревания его яиц составляет 15 - 25°С. Этот вид является исключительно пресноводным и чувствительно реагирует даже на небольшое повышение солености (в пределах 1 - 2%о). Однако жаброног способен выдерживать значительный дефицит кислорода в воде (2,5 - 2 мг/л).
...
12 11 2023 13:31:42
Статья в формате PDF
111 KB...
11 11 2023 16:57:42
Статья в формате PDF
273 KB...
10 11 2023 15:41:30
Разделение тимуса на истинные доли происходит у плодов белой крысы в процессе его неравномерного роста в плотном окружении, под давлением ветвей внутренней грудной артерии и сопровождающих вен.
...
08 11 2023 2:36:47
Статья в формате PDF
113 KB...
07 11 2023 15:47:27
Статья в формате PDF
124 KB...
04 11 2023 14:36:24
Статья в формате PDF
153 KB...
03 11 2023 11:31:11
Статья в формате PDF
127 KB...
02 11 2023 12:21:19
Статья в формате PDF
104 KB...
01 11 2023 16:33:19
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::