ПРЯМОЙ МЕТОД ЛЯПУНОВА ДЛЯ ГИПЕРБОЛИЧЕСКОЙ СМЕШАННОЙ ЗАДАЧИ НА ПЛОСКОСТИ
В работах [1-4] изучалось асимптотическое поведение решений задачи Коши для линейных гиперболических систем с одной прострaнcтвенной переменной - устойчивость, дихотомия, экспоненциальная расщепляемость - на основе построенного в [1,5] аппарата матриц Римана первого и второго рода, представляющих собой соответственно сингулярную и регулярную компоненты фундаментальной матрицы гиперболической системы. В [6] предложен подход к анализу устойчивости решений задачи Коши, основанный на приведении гиперболической системы к обыкновенному дифференциальному уравнению с ограниченным операторным коэффициентом в гильбертовом прострaнcтве и последующем применении метода функционалов Ляпунова. В данной работе рассматривается смешанная задача для почти линейной гиперболической системы с одной прострaнcтвенной переменной, встречающаяся в задачах акустики, теории упругости, химической кинетики [7-11]. Ранее в работе [10] исследовалась устойчивость стационарных решений этой задачи первым методом Ляпунова, установлен спектральный признак экспоненциальной устойчивости в норме. Ниже предложен вариант метода функционалов Ляпунова для этой задачи, установлен признак экспоненциальной устойчивости в норме в терминах матричных неравенств.
Рассматривается краевая задача для гиперболической системы с кратными хаpaктеристиками
(1)
Здесь П-полуполоса
;
- единичная матрица порядка , - строка размера Nk; - постоянные матрицы соответствующих размеров. Матрицы A, B и векторы - гладкие в своих областях определения, равномерно по при . Здесь и далее - евклидова норма в , знак * означает трaнcпонирование. Предполагаются выполненными условия согласования нулевого и первого порядков:
(2)
где При указанных условиях имеет место локальная однозначная разрешимость краевой задачи (1) в классе гладких функций [7]. Далее будем дополнительно предполагать: существует такое r > 0 что при условии имеет место однозначная гладкая разрешимость во всей полуполосе . Можно считать . В силу оценки (2) начальной функции отвечает решение .
Обозначим через H множество гладких функций , удовлетворяющих условиям (2) с заменой hk на h, Значения решения краевой задачи (1) при каждом t - элементы H. Будем говорить, что решение задачи (1) экспоненциально устойчиво в L2-норме, если существуют такие числа что для решений задачи (1), удовлетворяющих условию , верна оценка
Зафиксируем гладкую [0,1] на матрицу где блоки Gk имеют такие же размеры, как соответствующие блоки матрицы A, и удовлетворяют условиям
Представим матрицы A,G в виде где имеют порядок и построим матрицы
ТЕОРЕМА. Для экспоненциальной устойчивости в L2-норме решения u=0 краевой задачи (1) достаточно существование матрицы G с указанными свойствами такой, что выполняются неравенства
ЛИТЕРАТУРА
- РомановскийР.К. О матрицах Римана первого и второго рода //Докл. АН СССР. 1982. Т.267,№ 3. C.577-580.
- РомановскийР.К. Экспоненциально расщепляемые гиперболические системы с двумя независимыми переменными // Мат. сб. 1987. Т.133, № 3. С.341-355.
- РомановскийР.К. Об операторе монодромии гиперболической системы с периодическими коэффициентами // Применение методов функционального анализа в задачах математической физики. Киев: ИМ АН УССР, 1987. С.47-52.
- РомановскийР.К. Усреднение гиперболических уравнений//Докл. АН СССР. 1989. Т.306, № 2. C.286-289.
- РомановскийР.К. О матрицах Римана первого и второго рода //Мат. сб. 1985. Т.127, № 4. С.494-501.
- ВоробьеваЕ.В., РомановскийР.К. Об устойчивости решений задачи Коши для гиперболической системы с двумя независимыми переменными // Сиб. мат. журн. 1998. Т.39, № 6. С.1290-1292.
- АболиняВ.Э., МышкисА.Д. Смешанная задача для почти линейной гиперболи-ческой системы на плоскости //Мат. сб. 1960. Т.50, №4. С.423-442.
- ЗеленякТ.И. О стационарных решениях смешанных задач, возникающих при изучении некоторых химических процессов //Дифференц. уравнения. 1966. Т.2, №2. С.205-213.
- ГодуновС.К. Уравнения математической физики //М.: Наука. 1979.
- ЕлтышеваН.А. О качественных свойствах решений некоторых гиперболи-ческих систем на плоскости // Мат. сб. 1988. Т.135, №2. С.186-209.
- АкрамовТ.А.Качественный и численный анализ модели реактора с противотоком компонентов // Математическое моделирование каталитических реакторов. Новосибирск: Наука, 1989. С.195-214.
Статья в формате PDF 119 KB...
09 12 2024 20:26:54
Статья в формате PDF 123 KB...
08 12 2024 9:11:29
Статья в формате PDF 114 KB...
07 12 2024 7:59:24
Статья в формате PDF 113 KB...
06 12 2024 19:51:28
Приведены данные по петрографии, петрологии, геохимии и генезису магматитов боровлянского комплекса Горного Алтая. Гранитоиды отнесены к пералюминиевому I – типу Sr – не деплетиованному, Y – деплетированному. Расплавы для пород боровлянского комплекса образовались в результате мантийно-корового взаимодействия со значительной модификацией мантийной составляющей путём контаминации расплавов из нижней коры. Такие расплавы могут возникать в результате термальной релаксации в нижней коре с плавлением кварцевых эклогитов и гранатовых амфиболитов LIL – обогащённого мантийного клина, а мантийно-производные компоненты – в результате адиабатической декомпрессии в верхней мантии с участием большого количества летучих компонентов. ...
05 12 2024 18:42:26
Статья в формате PDF 245 KB...
04 12 2024 11:23:15
Статья в формате PDF 128 KB...
03 12 2024 10:46:45
У плодов человека 10-12 нед обнаружено формирование левых яремных лимфатических стволов. Медиальный ствол спускается к грудному протоку около трахеи и пищевода. Поперечный латеральный ствол выходит из воротного синуса крупного нижнего глубокого латерального шейного лимфатического узла, расположенного на месте медиального отрога яремного лимфатического мешка, проходит позади блуждающего нерва и общей сонной артерии и впадает в начало шейной части грудного протока. ...
30 11 2024 0:19:31
Статья в формате PDF 115 KB...
29 11 2024 5:57:43
Статья в формате PDF 369 KB...
28 11 2024 20:34:39
Статья в формате PDF 130 KB...
26 11 2024 20:24:24
Статья в формате PDF 310 KB...
25 11 2024 5:25:34
Статья в формате PDF 257 KB...
24 11 2024 23:56:57
Статья в формате PDF 285 KB...
23 11 2024 1:33:19
Статья в формате PDF 269 KB...
22 11 2024 1:30:47
Важность разработки и внедрения системы менеджмента качества в вузе отражена и закреплена в ряде приказов Федерального агентства по образованию и обусловлена предстоящим вступлением страны в ВТО и присоединение к Болонскому процессу. В статье описываются алгоритм, этапы деятельности, результаты разработки и внедрения СМК в Кузбасском государственном техническом университете. ...
21 11 2024 0:14:31
Статья в формате PDF 133 KB...
19 11 2024 19:50:50
Статья в формате PDF 118 KB...
18 11 2024 10:11:49
Статья в формате PDF 102 KB...
16 11 2024 21:26:46
Статья в формате PDF 339 KB...
15 11 2024 11:15:39
14 11 2024 17:52:56
Статья в формате PDF 133 KB...
13 11 2024 7:35:19
Статья в формате PDF 139 KB...
11 11 2024 21:14:55
Статья в формате PDF 109 KB...
09 11 2024 8:50:18
Статья в формате PDF 113 KB...
08 11 2024 22:29:42
Для растущих деревьев как живых организмов при оценке их пригодности для создания здоровой лесной среды дополнительно следует учитывать существенные биотехнические признаки, отличающиеся от понимания древостоя как склада кругляка. ...
07 11 2024 16:27:31
Статья в формате PDF 248 KB...
06 11 2024 5:21:38
Статья в формате PDF 161 KB...
05 11 2024 6:12:23
Статья в формате PDF 134 KB...
04 11 2024 20:42:15
В работе рассмотрены термодинамические аспекты люминесцентного газового анализа. Молекулы красителя, адсорбированные на поверхности пористого вещества или внедренные в полимерную пленку, рассматриваются как система невзаимодействующих частиц, погруженная в термостат. Для относительной интенсивности флюоресценции молекул красителя получена связь с основной термодинамической хаpaктеристикой термостата – энергией Гиббса. Определены термодинамические ограничения точности газового анализа. Показано, что оптимальной основой для люминесцентного анализатора является полимерная пленка с наименьшим значением поверхностного натяжения. ...
03 11 2024 17:33:34
Статья в формате PDF 278 KB...
02 11 2024 13:20:47
Статья в формате PDF 101 KB...
01 11 2024 22:25:43
Статья в формате PDF 127 KB...
31 10 2024 22:26:37
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::