ПРЯМОЙ МЕТОД ЛЯПУНОВА ДЛЯ ГИПЕРБОЛИЧЕСКОЙ СМЕШАННОЙ ЗАДАЧИ НА ПЛОСКОСТИ > Полезные советы
Тысяча полезных мелочей    

ПРЯМОЙ МЕТОД ЛЯПУНОВА ДЛЯ ГИПЕРБОЛИЧЕСКОЙ СМЕШАННОЙ ЗАДАЧИ НА ПЛОСКОСТИ

ПРЯМОЙ МЕТОД ЛЯПУНОВА ДЛЯ ГИПЕРБОЛИЧЕСКОЙ СМЕШАННОЙ ЗАДАЧИ НА ПЛОСКОСТИ

Романовский Р.К. Воробьева Е.В. Макарова И.Д. Статья в формате PDF 121 KB

В работах [1-4] изучалось асимптотическое поведение решений задачи Коши для линейных гиперболических систем с одной прострaнcтвенной переменной - устойчивость, дихотомия, экспоненциальная расщепляемость - на основе построенного в [1,5] аппарата матриц Римана первого и второго рода, представляющих собой соответственно сингулярную и регулярную компоненты фундаментальной матрицы гиперболической системы. В [6] предложен подход к анализу устойчивости решений задачи Коши, основанный на приведении гиперболической системы к обыкновенному дифференциальному уравнению с ограниченным операторным коэффициентом в гильбертовом прострaнcтве и последующем применении метода функционалов Ляпунова. В данной работе рассматривается смешанная задача для почти линейной гиперболической системы с одной прострaнcтвенной переменной, встречающаяся в задачах акустики, теории упругости, химической кинетики [7-11]. Ранее в работе [10] исследовалась устойчивость стационарных решений этой задачи первым методом Ляпунова, установлен спектральный признак экспоненциальной устойчивости в  норме. Ниже предложен вариант метода функционалов Ляпунова для этой задачи, установлен признак экспоненциальной устойчивости в  норме в терминах матричных неравенств.

Рассматривается краевая задача для гиперболической системы с кратными хаpaктеристиками

       (1)

Здесь П-полуполоса

   - единичная матрица порядка ,   - строка размера Nk;  - постоянные матрицы соответствующих размеров. Матрицы A, B и векторы  - гладкие в своих областях определения,  равномерно по  при . Здесь и далее  - евклидова норма в , знак * означает трaнcпонирование. Предполагаются выполненными условия согласования нулевого и первого порядков:

  (2)

где  При указанных условиях имеет место локальная однозначная разрешимость краевой задачи (1) в классе гладких функций [7]. Далее будем дополнительно предполагать: существует такое r > 0 что при условии  имеет место однозначная гладкая разрешимость во всей полуполосе . Можно считать . В силу оценки (2) начальной функции отвечает решение .

Обозначим через H множество гладких функций , удовлетворяющих условиям (2) с заменой hk на h, Значения решения  краевой задачи (1) при каждом t - элементы H. Будем говорить, что решение  задачи (1) экспоненциально устойчиво в L2-норме, если существуют такие числа  что для решений задачи (1), удовлетворяющих условию , верна оценка

Зафиксируем гладкую [0,1] на  матрицу  где блоки Gk имеют такие же размеры, как соответствующие блоки матрицы A, и удовлетворяют условиям

Представим матрицы A,G  в виде  где  имеют порядок  и построим матрицы

ТЕОРЕМА. Для экспоненциальной устойчивости в L2-норме решения u=0 краевой задачи (1) достаточно существование матрицы G с указанными свойствами такой, что выполняются неравенства

ЛИТЕРАТУРА

  1. РомановскийР.К. О матрицах Римана первого и второго рода //Докл. АН СССР. 1982. Т.267,№ 3. C.577-580.
  2. РомановскийР.К. Экспоненциально расщепляемые гиперболические системы с двумя независимыми переменными // Мат. сб. 1987. Т.133, № 3. С.341-355.
  3. РомановскийР.К. Об операторе монодромии гиперболической системы с периодическими коэффициентами // Применение методов функционального анализа в задачах математической физики. Киев: ИМ АН УССР, 1987. С.47-52.
  4. РомановскийР.К. Усреднение гиперболических уравнений//Докл. АН СССР. 1989. Т.306, № 2. C.286-289.
  5. РомановскийР.К. О матрицах Римана первого и второго рода //Мат. сб. 1985. Т.127, № 4. С.494-501.
  6. ВоробьеваЕ.В., РомановскийР.К. Об устойчивости решений задачи Коши для гиперболической системы с двумя независимыми переменными // Сиб. мат. журн. 1998. Т.39, № 6. С.1290-1292.
  7. АболиняВ.Э., МышкисА.Д. Смешанная задача для почти линейной гиперболи-ческой системы на плоскости //Мат. сб. 1960. Т.50, №4. С.423-442.
  8. ЗеленякТ.И. О стационарных решениях смешанных задач, возникающих при изучении некоторых химических процессов //Дифференц. уравнения. 1966. Т.2, №2. С.205-213.
  9. ГодуновС.К. Уравнения математической физики //М.: Наука. 1979.
  10. ЕлтышеваН.А. О качественных свойствах решений некоторых гиперболи-ческих систем на плоскости // Мат. сб. 1988. Т.135, №2. С.186-209.
  11. АкрамовТ.А.Качественный и численный анализ модели реактора с противотоком компонентов // Математическое моделирование каталитических реакторов. Новосибирск: Наука, 1989. С.195-214.


ПЕТРОЛОГИЯ ПОРОДНЫХ ТИПОВ И ГЕНЕЗИС БОРОВЛЯНСКОГО КОМПЛЕКСА ГОРНОГО АЛТАЯ

ПЕТРОЛОГИЯ ПОРОДНЫХ ТИПОВ И ГЕНЕЗИС БОРОВЛЯНСКОГО КОМПЛЕКСА ГОРНОГО АЛТАЯ Приведены данные по петрографии, петрологии, геохимии и генезису магматитов боровлянского комплекса Горного Алтая. Гранитоиды отнесены к пералюминиевому I – типу Sr – не деплетиованному, Y – деплетированному. Расплавы для пород боровлянского комплекса образовались в результате мантийно-корового взаимодействия со значительной модификацией мантийной составляющей путём контаминации расплавов из нижней коры. Такие расплавы могут возникать в результате термальной релаксации в нижней коре с плавлением кварцевых эклогитов и гранатовых амфиболитов LIL – обогащённого мантийного клина, а мантийно-производные компоненты – в результате адиабатической декомпрессии в верхней мантии с участием большого количества летучих компонентов. ...

05 12 2024 18:42:26

ОПРЕДЕЛЕНИЕ ФАКТОРОВ РИСКА АТЕРОСКЛЕРОЗА

ОПРЕДЕЛЕНИЕ ФАКТОРОВ РИСКА АТЕРОСКЛЕРОЗА Статья в формате PDF 114 KB...

02 12 2024 15:59:25

К ВОПРОСУ ЗАКРЫТИЯ РАН ПРИ ОЖИРЕНИИ

К ВОПРОСУ ЗАКРЫТИЯ РАН ПРИ ОЖИРЕНИИ Статья в формате PDF 116 KB...

01 12 2024 13:37:18

НАЧАЛЬНЫЕ ЭТАПЫ ФОРМИРОВАНИЯ ЛЕВОГО ЯРЕМНОГО ЛИМФАТИЧЕСКОГО СТВОЛА У ПЛОДОВ ЧЕЛОВЕКА

НАЧАЛЬНЫЕ ЭТАПЫ ФОРМИРОВАНИЯ ЛЕВОГО ЯРЕМНОГО ЛИМФАТИЧЕСКОГО СТВОЛА У ПЛОДОВ ЧЕЛОВЕКА У плодов человека 10-12 нед обнаружено формирование левых яремных лимфатических стволов. Медиальный ствол спускается к грудному протоку около трахеи и пищевода. Поперечный латеральный ствол выходит из воротного синуса крупного нижнего глубокого латерального шейного лимфатического узла, расположенного на месте медиального отрога яремного лимфатического мешка, проходит позади блуждающего нерва и общей сонной артерии и впадает в начало шейной части грудного протока. ...

30 11 2024 0:19:31

УСЛОВИЯ ЭФФЕКТИВНОСТИ БЛОЧНО-МОДУЛЬНОГО ОБУЧЕНИЯ

УСЛОВИЯ ЭФФЕКТИВНОСТИ БЛОЧНО-МОДУЛЬНОГО ОБУЧЕНИЯ Статья в формате PDF 157 KB...

27 11 2024 2:23:11

ЭКОНОМИЧЕСКИЕ АСПЕКТЫ УЩЕРБА ОТ СТИХИЙНЫХ БЕДСТВИЙ

ЭКОНОМИЧЕСКИЕ АСПЕКТЫ УЩЕРБА ОТ СТИХИЙНЫХ БЕДСТВИЙ Статья в формате PDF 130 KB...

26 11 2024 20:24:24

РАЗРАБОТКА СИСТЕМЫ МЕНЕДЖМЕНТА КАЧЕСТВА В КузГТУ

РАЗРАБОТКА СИСТЕМЫ МЕНЕДЖМЕНТА КАЧЕСТВА В КузГТУ Важность разработки и внедрения системы менеджмента качества в вузе отражена и закреплена в ряде приказов Федерального агентства по образованию и обусловлена предстоящим вступлением страны в ВТО и присоединение к Болонскому процессу. В статье описываются алгоритм, этапы деятельности, результаты разработки и внедрения СМК в Кузбасском государственном техническом университете. ...

21 11 2024 0:14:31

ЛЕД И ЛЕДНИКИ

ЛЕД И ЛЕДНИКИ Статья в формате PDF 279 KB...

20 11 2024 23:22:13

КРИОМОНИТОРИНГ АГРОЛАНДШАФТОВ ЦЕНТРАЛЬНОЙ ЯКУТИИ

КРИОМОНИТОРИНГ АГРОЛАНДШАФТОВ ЦЕНТРАЛЬНОЙ ЯКУТИИ Статья в формате PDF 324 KB...

17 11 2024 6:35:29

НАРКОМАНИЯ В РСО-АЛАНИЯ ЗА ПЕРИОД 1999-2004 гг.

НАРКОМАНИЯ В РСО-АЛАНИЯ ЗА ПЕРИОД 1999-2004 гг. Статья в формате PDF 121 KB...

12 11 2024 8:50:56

ПЕРВОЕ НАЧАЛО ТЕРМОЛЕВИТАЦИИ

ПЕРВОЕ НАЧАЛО ТЕРМОЛЕВИТАЦИИ Статья в формате PDF 114 KB...

10 11 2024 14:14:18

ВОЗРАСТНОЕ РАСПРЕДЕЛЕНИЕ КАЧЕСТВА СТВОЛА ДЕРЕВЬЕВ НА ПРОБНОЙ ПЛОЩАДИ РАЗНОВОЗРАСТНОГО СОСНЯКА

ВОЗРАСТНОЕ РАСПРЕДЕЛЕНИЕ КАЧЕСТВА СТВОЛА ДЕРЕВЬЕВ НА ПРОБНОЙ ПЛОЩАДИ РАЗНОВОЗРАСТНОГО СОСНЯКА Для растущих деревьев как живых организмов при оценке их пригодности для создания здоровой лесной среды дополнительно следует учитывать существенные биотехнические признаки, отличающиеся от понимания древостоя как склада кругляка. ...

07 11 2024 16:27:31

термодинамика и люминесцентный газовый анализ

термодинамика и люминесцентный газовый анализ В работе рассмотрены термодинамические аспекты люминесцентного газового анализа. Молекулы красителя, адсорбированные на поверхности пористого вещества или внедренные в полимерную пленку, рассматриваются как система невзаимодействующих частиц, погруженная в термостат. Для относительной интенсивности флюоресценции молекул красителя получена связь с основной термодинамической хаpaктеристикой термостата – энергией Гиббса. Определены термодинамические ограничения точности газового анализа. Показано, что оптимальной основой для люминесцентного анализатора является полимерная пленка с наименьшим значением поверхностного натяжения. ...

03 11 2024 17:33:34

ИСТОРИЧЕСКИЕ ВОПРОСЫ О ПРОИСХОЖДЕНИИ ХРИСТИАНСТВА

ИСТОРИЧЕСКИЕ ВОПРОСЫ О ПРОИСХОЖДЕНИИ ХРИСТИАНСТВА Статья в формате PDF 101 KB...

01 11 2024 22:25:43

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::