ПЕТРОЛОГИЯ, ГЕОХИМИЯ И ФЛЮИДНЫЙ РЕЖИМ АНОРОГЕННЫХ ГРАНИТОИДОВ САНГИЛЕНА > Полезные советы
Тысяча полезных мелочей    

ПЕТРОЛОГИЯ, ГЕОХИМИЯ И ФЛЮИДНЫЙ РЕЖИМ АНОРОГЕННЫХ ГРАНИТОИДОВ САНГИЛЕНА

ПЕТРОЛОГИЯ, ГЕОХИМИЯ И ФЛЮИДНЫЙ РЕЖИМ АНОРОГЕННЫХ ГРАНИТОИДОВ САНГИЛЕНА

Гусев А.И. Белозерцев Н.В. Приведены данные по петрологии и потенциальной рудоносности умеренно-щелочных гранитоидов Нагорного Сангилена, которые по сумме признаков отнесены к анорогенному типу. Показано ведущее значение в генерации этих фельзических интрузивных образований флюидного режима, в котором доминирующую роль играли концентрации плавиковой кислоты. Статья в формате PDF 261 KB умеренно-щелочные гранитыанорогенный типпетрологиягеохимияСангилен

Анорогенные граниты, с момента выделения их в особый петрогеохимический тип, всегда вызывали неподдельный интерес петрологов. Термин «А-тип» гранитов был введён в литературу М. Лоизелем и Д. Уонзом в 1979 году для описания гранитов, которые были генерированы вдоль континентальных рифтовых зон (анорогенных обстановок) [6]. По сравнению с другими типами гранитов, А-тип показывал высокие отношения Fe/Mg, (K + Na)/Al, K/Na, а также высокие концентрации F, Zr, Nb, Ga, редкоземельных элементов (РЗЭ), Y, Zn и низкие содержания Mg, Ca, Cr, Ni [4, 9].

Анорогенные гранитоиды Сангилена слагают несколько относительно крупных массивов - Шинхемский, Дзосский, Хусуингольский и ряд мелких, в том числе Тарбагатайский. Актуальность изучения этих гранитоидов определяется тем, что в непосредственной близости с ними располагаются граниты улугтанзекского комплекса Сангилена, с которыми прострaнcтвенно и парагенетически связывается известное редкометалльное месторождение Улуг-Танзек. Анализируемые гранитоиды относятся к среднепалеозойскому возрасту.

Наиболее крупный Шинхемский массив локализуется на водоразделе рек Шин-Хем, Хурхерен-Гол, Дзос и образует вытянутое в северо-западном направлении небольшой плутон площадью 120 км2. Сложен Шинхемский массив однородными крупнокристаллическими гранитами и лейкогранит-порфирами, занимающими краевые части интрузива.

Дзосский массив распложен в среднем течении одноименной реки в 5 км южнее Шинхемского. Он образует изометричный шток площадью около 100 км2 и прорывает известняки протерозоя. Неоднородность гранитов определяется тем, что наиболее глубинные части его сложены крупнокристаллическими разностями первой фазы, а апикальные части - порфировидными лейкогранитами второй фазы.

Хусуингольский массив расположен на крайнем юго-востоке Сангилена, занимая осевую зону одноименной грабен-синклинали. В его строении принимают участии две группы пород - более ранние сиениты и интрудирующие их граниты и лейкогранит-порфиры. Последние тяготеют к периферии полнокристаллических крупнозернистых гранитов ранней фазы. По врезу в вертикальном разрезе наблюдается постепенная смена (снизу вверх) полнокристаллических гранитов порфировидными и далее лейкогранит-порфирами [2].

Тарбагатайский массив площадью более 35 км2 обнажён в крайней северной части Сангилена, в верховьях реки Верхний Тарбагатай. Он сложен однородными крупнокристаллическими лейкогранитами поздней фазы.

Полно-крупнокристаллические граниты первой фазы обладают гипидиморфной микроструктурой и состоят (масс. %) из кварца - 25-26, олигоклаза (№ 23-28) - 30-32, калинатрового полевого шпата -
35-37, биотита - 3-5, роговой обманки - 0-3. Спектр акцессориев охватывает сфен, магнетит, ортит, редко - апатит. Петрохимически они хаpaктеризуются низкими содержаниями Mg, Ca, Ti, Mn и высокими - F, Ba, Sr, Zr, Nb, Li, Y. В двухфазных массивах в ранней фазе гранитов наблюдаются более высокие суммарные концентрации редкоземельных элементов и нормированные к хондриту отношения лантана к иттербию (13,7 в Дзосском массиве и 12,3 в Хусуиногльском) (табл. 1). Эти отношения свидетельствуют о более высокой степени дифференциации редкоземельных элементов. В гранитах главной фазы и лейкогранит-порфирах устойчиво высокие отношения K/Na.

Таблица 1

Представительные анализы анорогенных гранитоидов Сангилена
(оксиды в масс. %, элементы - в г/т)

Оксиды, химические элементы
и их отношения

1

2

3

4

5

6

7

1

2

3

4

5

6

7

8

SiO2

72,86

74,57

71,03

75,8

73,22

75,84

75,87

TiO2

0,21

0,16

0,26

0,11

0,19

0,09

0,08

Al2O3

13,51

13,31

14,5

13,04

13,65

12,5

12,4

Fe2O3

0,72

0,73

0,86

0,71

0,32

0,57

0,56

FeO

2,65

2,0

1,66

1,08

2,37

1,93

1,94

MnO

0,01

0,01

0,03

0,02

0,04

0,01

0,01

MgO

0,22

0,21

0,39

0,09

0,41

0,05

0,06

CaO

0,98

0,91

1,64

0,82

1,0

0,40

0,38

Na2O

3,86

3,8

3,88

3,46

3,71

3,9

3,8

K2O

4,91

4,25

4,68

4,83

5,03

4,66

5,06

P2O5

0,04

0,05

0,13

0,05

0,06

0,02

0,03

Li

33

58

21

7

43

15

14

Cs

2

3,5

3

2

5

2

3

Rb

139

173

128

160

195

180

175

Ba

873

605

803

86

550

375

370

Sr

217

148

327

65

165

40

43

F

410

413

380

390

620

915

920

Be

3

4

4

5

3

4

4

U

3

4

1,2

2

6

5,1

5

Th

17

17,1

13

24

25

22,2

22

La

28

17

26

18

31

30

33

Ce

55

42

53

40

56

64

60

Pr

1,5

1,1

1,4

1,0

1,6

0,9

0,8

Nd

22

12

21

11

19

27

17

Sm

4

3

3,5

3

4,1

6

3,5

Eu

0,64

0,47

0,62

0,45

0,5

0,4

0,37

Gd

4,3

0,72

3,5

0,65

0,55

0,53

0,55

Tb

0,29

0,33

0,27

0,3

0,3

0,62

0,34

Dy

2,1

2,0

1,9

0,9

0,8

0,5

0,6

Ho

0,25

0,2

0,24

0,18

0,15

0,11

0,14

Er

1,0

0,7

0,98

0,65

0,55

0,45

0,48

Tm

0,19

0,23

0,2

0,21

0,2

0,43

0,26

Yb

1,35

1,37

1,4

1,35

1,7

1,3

1,75

Lu

0,35

0,25

0,39

0,26

0,3

0,6

0,26

Y

24,5

5,6

25,1

4,8

4,5

3,8

3,5

Zr

135

46

140

52

50

45

43

Ta

1,4

2,45

1,4

1,5

1,4

2

2,2

Sc

2,31

2,3

2,4

2,32

1,9

2,4

2,3

Nb

88

98

87

101

100

102

101

Hf

5,5

5,2

5,6

5,1

6,0

5

5,5

Ni

4,9

5,2

4,5

3,8

3,7

9

8

Co

2,7

2,5

2,6

2,1

2,2

1,6

1,5

Sb

0,78

0,47

0,8

0,42

0,8

0,74

0,75

Cu

10,3

8,3

11,5

9,4

9,8

10,1

9,5

Zn

29

28

30,5

29,7

28

30

31

Pb

30

20

31,8

19,8

21

21

18

∑РЗЭ

145,5

86,9

139,5

82,7

121,2

136,6

122,5

(La/Yb)N

13,7

8,2

12,3

8,8

12,0

15,2

12,5

Rb/Sr

0,64

1,2

0,39

2,5

1,2

4,5

4,1

Eu/Eu*

0,034

0,051

0,039

0,05

0,043

0,024

0,037

TE 1,3

-

1,49

-

1,13

1,22

1,41

1,13

Примечание: PЗЭ - редкозмельные элемннты; (La/Yb)N - нормированное к хондриту по [3] отношение лантана к иттербию; Rb/Sr - отношение рубидия к стронцию; Eu*= (SmN + GdN)/2. ТЕ1,3 - тетрадный эффект по В. Ирбер [5]. Дзосский массив: 1 - граниты полнокристаллические, 2 - лейкогранит-порфиры; Хусуингольский массив: 3 - граниты полнокристаллические, 4 - лейкогранит-порфиры; 5 - лейкогранит-порфиры Шинхемского массива; 6, 7 - лейкогранит-порфиры Тарбагатайского массива.

Лейкогранит-порфиры второй фазы обладают порфировидной структурой и гипидиоморфной микроструктурой основной ткани породы и состоят (масс. %): кварц - 32-33, олигоклаз (№ 17-20) - 32-33, микроклин-пертит - 31-33, биотит - 1-3. Из акцессориев отмечены лишь сфен и циркон. Биотит лейкогранитов отличается более высокими концентрациями фтора и редких элементов (рубидия, лития) (табл. 2). Лейкогранитам свойственны те же петрохимические хаpaктеристики, что и гранитам ранней фазы. В двухфазных массивах наблюдается снижение суммарных концентраций редкоземельных элементов и уменьшение нормированных к хондриту отношений лантана к иттербию (8,2 в Дзосском и 8,8 в Хусуингольском массивах). В сравнении с ранней фазой в лейкогранит-порфирах наблюдается некоторое увеличение отношения Eu/Eu* и Rb/Sr (см. табл. 1).

Таблица 2

Представительные анализы биотитов анорогенных гранитоидов Сангилена

Компоненты, %

1

2

3

4

5

6

SiO2

39,26

38,40

39,14

40,34

38,54

38,44

TiO2

1,27

1,18

1,48

0,99

0,87

0,79

Al2O3

16,32

16,35

16,25

18,86

16,25

16,25

Fe2O3

5,70

5,75

5,20

5,11

5,20

5,20

FeO

16,87

15,72

13,45

13,24

12,45

13,45

MgO

5,27

7,80

8,26

3,9

6,26

6,26

MnO

0,51

0,52

0,52

0,38

0,51

0,50

CaO

0,54

0,82

1,24

0,60

1,21

1,22

Na2O

0,35

0,46

0,83

0,22

0,81

0,84

K2O

8,11

7,69

8,13

8,37

8,93

8,43

H2O+

3,21

3,70

3,66

4,00

3,66

3,69

F

1,16

0,85

1,05

2,91

3,05

3,55

Rb2O

0,35

0,40

0,38

0,65

0,76

0,79

Li2O

0,33

0,31

0,35

0,54

0,61

0,66

Сумма

99,25

99,95

99,94

100,11

100,01

100,07

На тройной диаграмме составов биотитов, построенной автором в координатах OH/F - f - l, где отражены наиболее важные компоненты слюды (OH/F - отношение гидроксильной группы к фтору; f - общая железистсоть биотита; l - общая гинозёмистость биотита) [1] и граниты лавной фазы, и лейкогранит-порфиры попадают в поле анорогенных (А-тип) гранитов.

Хаpaктерной особенностью массивов анорогенных гранитоидов Сангилена является их зональное строение, когда в центре крупных массивов располагаются более ранние фазы, а по периферии локализуются более дифференцированные поздние разности лейкогранитов с образованием обратной зональности. Установлено, что обратная зональность массивов проявляется тогда, когда более эволюционированные порции магмы локализуются на периферии интрузивов; контакты между фазами и фациями контрастные с дискордантными текстурами [8]. Именно такие наблюдения зафиксированы нами в пределах Дзосского, Хусуингольского и Шинхемского массивов. Хаpaктер зональности плутонов интерпретируется как результат химической дифференциации и скорости поступления последовательных фаз. Когда скорость становления массивов малая предыдущие фазы внедрения успевают закристаллизоваться и тогда более поздние фазы внедряются на периферию плутонов с образованием обратной зональности [1].

По соотношениям Zr, Y, Rb, Sr, Ti, Ba в формировании породных типов не просматривается тренд дифференциации с кристаллизацией из расплавов пироксенов, роговых обманок, биотитов, полевых шпатов.

Высокая насыщенность расплавов фтором и другими летучими компонентами позволяет предполагать важную роль в генерации анорогенных гранитоидов Сангилена флюидного режима. Хаpaктерны несколько меньшие температуры кристаллизации лейкогранит-порфиров и более высокие значения фугитивностей воды, парциального давления углекислоты. Обращает на себя внимание повышенные концентрации плавиковой кислоты во флюидах в лейкогранит-порфирах, превышающие на порядок таковые в гранитах ранней фазы. Редкометалльный профиль металлогенической специализации гранитоидов Сангилена можно предположить, исходя из двух признаков:

1 - геохимической специализации гранитоидов на редкие металлы (Zr, Nb, Li);

2 - повышенные концентрации редких элементов - рубидия и лития в биотитах.

При формировании лейкогранит-порфиров проявился тетрадный эффект фpaкционирования редкоземельных элементов M-типа [5, 7], значения которого (от 1,13 до 1,49) приведены в табл. 1 (TE 1,3).

Таким образом, петрологические, петрохимические данные и параметры флюидного режима указывают на потенциальную рудоносность гранитоидов Сангилена на редкометалльное оруденение.

Список литературы

  1. Гусев А.И., Гусев Н.И., Табакаева Е.М. Петрология и рудоносность белокурихинского комплекса Алтая. - Бийск: БПГУ, 2008. - 193 с.
  2. Минин В.А., Щипицын Ю.Г., Довгаль В.Н., Иванова Л.Д., Маликова И.Н. Редкие и редкоземельные элементы в среднепалеозойских гранитах нагорья Сангилен (Юго-Восточная Тува) / Редкоземельные элементы в магматических породах. - Новосибирск, 1988. - С. 44-59.
  3. Anders E., Greevesse N. // Geochim. Cosmochim. Acta, 1989. - V. 53. - P. 197.
  4. Collins W.J., Beams S.D., White A.J.R., Chappell B.W. // Contributions to Mineralogy and Рetrology. -1982. - Vol. 80, № 2. - P. 189.
  5. Irber W. // Geochim Comochim Acta. - 1999. - Vol. 63, №3/4. - P. 489.
  6. Loiselle M.C., Wones D.R. // Abstracts of papers to be presented at the Annual Meetings of the Geological Society of America and Associated Societies, San Diego, California. - 1979. - Vol. 11, № 3. - P. 468.
  7. Masuda A., Ikeuchi Y. // Geochim J. - 1979. - Vol. 13. - P. 19.
  8. Vigneresse J.L. // Ore geology Reviews. - 2007. - Vol. 30. - № 2. - P. 181.
  9. Whalen J.B., Currie K.L., Chappell B.W. // Contributions to Mineralogy and Petrology. - 1987. - Vol. 95, № 3. - P. 407.


СВОЙСТВА КРУГА ЛАГИРА

СВОЙСТВА КРУГА ЛАГИРА Статья в формате PDF 555 KB...

16 04 2024 11:17:55

ИСПОЛЬЗОВАНИЕ ЛЕСНЫХ РЕСУРСОВ

ИСПОЛЬЗОВАНИЕ ЛЕСНЫХ РЕСУРСОВ Статья в формате PDF 269 KB...

15 04 2024 3:54:11

ПЕРИФЕРИЧЕСКИЙ КРОВОТОК У ДЕВУШЕК 18-22 ЛЕТ В УСЛОВИЯХ ИЗОМЕТРИЧЕСКИХ НАГРУЗОК НАРАСТАЮЩЕЙ ВЕЛИЧИНЫ

ПЕРИФЕРИЧЕСКИЙ КРОВОТОК У ДЕВУШЕК 18-22 ЛЕТ В УСЛОВИЯХ ИЗОМЕТРИЧЕСКИХ НАГРУЗОК НАРАСТАЮЩЕЙ ВЕЛИЧИНЫ В исследовании изучались и оценивались адаптивные реакции периферического звена кровообращения у дeвyшек 18-22 лет при локальных изометрических нагрузках нарастающей величины. Хаpaктерно, что с ростом прессорных воздействий на сосуды работающих мышц объемная скорость кровотока оставалась более высокой, чем в покое. В целом качество приспособительных реакций кровообращения было ниже у дeвyшек 18 лет при низких объемах выполняемой работы. ...

13 04 2024 16:36:35

СОВРЕМЕННЫЙ ПОДХОД К ДИАГНОСТИКЕ И ЛЕЧЕНИЮ НЕОСЛОЖНЕННЫХ ФРОНТИТОВ

СОВРЕМЕННЫЙ ПОДХОД К ДИАГНОСТИКЕ И ЛЕЧЕНИЮ НЕОСЛОЖНЕННЫХ ФРОНТИТОВ Описаны причины развития и особенности лечения больных воспалительными заболеваниями лобных пазух в регионе Северного Кавказа по данным Ростовской ЛОР клиники и ЛОР кафедры Ставропольской Медицинской Академии. Рассмотрены направления в совершенствовании метода трепанопункции в этих клиниках. ...

12 04 2024 15:10:13

ТОПОГРАФИЯ БРЫЖЕЕЧНОГО КИШЕЧНОГО СТВОЛА У БЕЛОЙ КРЫСЫ

ТОПОГРАФИЯ БРЫЖЕЕЧНОГО КИШЕЧНОГО СТВОЛА У БЕЛОЙ КРЫСЫ Брыжеечный лимфатический ствол белой крысы проходит вдоль ствола краниальной брыжеечной артерии без перерыва в одноименных лимфоузлах. ...

11 04 2024 20:51:37

Features of definition of tax base till the vat

Features of definition of tax base till the vat Статья в формате PDF 113 KB...

07 04 2024 16:19:44

МЕТОДИКА ВЫБОРА МЕСТ РАСПОЛОЖЕНИЯ БАНКОМАТОВ

МЕТОДИКА ВЫБОРА МЕСТ РАСПОЛОЖЕНИЯ БАНКОМАТОВ Статья в формате PDF 508 KB...

05 04 2024 23:48:46

ИЗМЕНЕНИЯ ПОРТАЛЬНОГО ДАВЛЕНИЯ ПРИ ОСТРОМ ЭКСПЕРИМЕНТАЛЬНОМ ПАНКРЕАТИТЕ

ИЗМЕНЕНИЯ ПОРТАЛЬНОГО ДАВЛЕНИЯ ПРИ ОСТРОМ ЭКСПЕРИМЕНТАЛЬНОМ ПАНКРЕАТИТЕ В условиях эксперимента доказано, что острый панкреатит и травма поджелудочной железы приводят к повышению гемоциркуляции в поджелудочной железы. Хроническая алкогольная интоксикация, длительное применение ингибиторов протонной помпы и сочетание этих условий статистически значимо снижают перфузию в поджелудочной железе, желудке и двенадцатиперстной кишке. Для коррекции развившихся изменений рекомендовано применять электромагнитные волны. При этом электромагнитные волны низкой интенсивности частотой 61 Ггц снижают показатели перфузии в органах брюшной полости. Излучение частотой 65 Ггц – увеличивает эти показатели. ...

23 03 2024 1:42:37

ПРОСТРАНСТВЕННЫЕ КООРДИНАТЫ КОРЕШКА ТРОЙНИЧНОГО НЕРВА ПРИ ПЕРЕСЕЧЕНИИ ИМ ВЕРХНЕГО КРАЯ ПИРАМИДЫ ВИСОЧНОЙ КОСТИ У ВЗРОСЛОГО ЧЕЛОВЕКА

ПРОСТРАНСТВЕННЫЕ КООРДИНАТЫ КОРЕШКА ТРОЙНИЧНОГО НЕРВА ПРИ ПЕРЕСЕЧЕНИИ ИМ ВЕРХНЕГО КРАЯ ПИРАМИДЫ ВИСОЧНОЙ КОСТИ У ВЗРОСЛОГО ЧЕЛОВЕКА Авторы, используя стереокраниобазиометр собственной конструкции, на 248 объектах установили, что точка пересечения верхнего края пирамиды височной кости корешком тройничного нерва занимает преимущественно заднее, латеральное и высокое положение при брахицефалии и брахибазилии, а при долихоцефалии и долихобазилии – переднее, медиальное и низкое положение. Большим абсолютным размерам черепа соответствует высокое, заднее и латеральное положение данной точки, а малым абсолютным размерам черепа – ее низкое, переднее и медиальное положение. Наибольшая степень корреляции имеет место с индексом треугольника с вершинами в передних точках наружных слуховых проходов и в глабелле. Полученные данные могут быть использованы при изучении закономерностей морфогенеза черепа человека, а также при планировании операций чрезкожной радикотомии. ...

21 03 2024 18:15:15

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::