РАЗМЕРНЫЕ ЭФФЕКТЫ И ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ ЧИСТЫХ МЕТАЛЛОВ > Полезные советы
Тысяча полезных мелочей    

РАЗМЕРНЫЕ ЭФФЕКТЫ И ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ ЧИСТЫХ МЕТАЛЛОВ

РАЗМЕРНЫЕ ЭФФЕКТЫ И ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ ЧИСТЫХ МЕТАЛЛОВ

Юров В.М. Лауринас В.Ч. Гученко С.А. Завацкая О.Н. В работе для 55 элементов периодической системы рассчитаны поверхностное натяжение, критический радиус и постоянная Толмена. Для металлов с низкой температурой плавления величина поверхностного натяжения составляет доли Дж/м2, а для тугоплавких – единицы Дж/м2. Критический радиус d хаpaктеризует внутренние размерные эффекты и не превышает 10 нм для исследованных металлов. Статья в формате PDF 372 KB

Из 118 химических элементов, открытых на сегодняшний день, 96 относятся к металлам. Несмотря на появление большого количества неметаллических материалов, их значение в технике и в жизни человека остается огромным. При работе различных машин и механизмов во многих случаях основную роль играет поверхность металла и физико-химические процессы на его поверхности.

В настоящей работе приведены экспериментальные и теоретические результаты по поверхностному натяжению чистых
металлов.

Постоянная Толмена δ является основным параметром в термодинамике размерных эффектов. Физически она означает расстояние от поверхности натяжения до эквимолекулярной поверхности [1]. В большинстве работ считается, что экспериментальное определение постоянной Толмена принципиально невозможно, поэтому основной упор делается на ее расчетах с использованием численного моделирования [2]. В работе [3] получено выражение для постоянной Толмена:

где h - высота атомного монослоя, α показывает, во сколько раз среднеквадратичное смещение атомов на поверхности отличается от такового в объеме.

Рассчитанная по этой формуле постоянная Толмена для золота оказалась равной 0,275 nm. В настоящей работе мы рассмотрим методы экспериментального определения постоянной Толмена.

Поверхностное натяжение твердых тел

Экспериментальное определение поверхностного натяжения твердых тел затруднено тем, что их молекулы (атомы) лишены возможности свободно перемещаться. Исключение составляет пластическое течение металлов при температурах, близких к точке плавления [4].

Недавно нами были предложены методы экспериментального определения поверхностного натяжения твердых диэлектриков и магнитных материалов, основанные на универсальной зависимости физического свойства твердого тела от его размеров [5-7]. В этой работе мы проводим сравнение нашего метода с методом «нулевой ползучести».

В методе «нулевой ползучести» (метод Таммана-Удина) образец (длинной нити, фольги) нагревают до достаточно высокой температуры, так что он начинает сокращаться по длине под действием поверхностных напряжений. К образцу прикладывается внешняя сила, поддерживающая неизменной форму образца. По величине этой силы определяют величину поверхностного натяжения. Экспериментальные данные для некоторых металлов взяты из работы [8] и приведены в табл. 1.

В работах [9-10] и ряде других нами получена формула, которая описывает зависимость физического свойства твердого тела от его размера:

               (1)

Здесь А0 - физическое свойство массивного образца; A(r) - физическое свойство малой частицы или тонкой пленки; d - критический радиус или критическая толщина пленки, начиная с которого проявляются размерные эффекты. Для критического радиуса нами получена формула:

                    (2)

Здесь σ - поверхностное натяжение массивного образца; υ - молярный объем; R - газовая постоянная; Т - температура.

В монографии японских и российских физиков [11] считается, что уменьшение температуры плавления малых частиц связано с тем, что атомы на поверхности имеют меньшее число соседей, чем в объеме, следовательно, менее крепко связаны и менее ограничены в своем тепловом движении. Там же отмечается, что обычно уменьшение температуры нанокристалла обратно пропорционально его размеру. Однако теории этого эффекта
пока нет.

Таблица 1

Экспериментальные данные по поверхностному натяжению некоторых металлов в твердой и жидкой фазах и их сравнение с нашим методом

Металл

Температура, °С

σ, Дж/м2 [8]
(твердая фаза)

σ, Дж/м2
(наш метод)

σ, Дж/м2
 
(жидкая фаза)

Ag

930

1,14 ± 0,09

1,234

0,126

Al

180

1,14 ± 0,2

1,070

0,093

Au

1040

1,37 ± 0,15

1,312

0,132

Cu

900

1,75 ± 0,09

1,356

0,177

Pt

1310

2,3 ± 0,8

-

0,208

W

1750

2,9 ± 0,3

2,873

-

Zn

380

0,83

0,693

-

Если воспользоваться аналогией скалярных полей, то мы получаем для температуры плавления малых частиц уравнение, аналогичное (1):

                          (3)

где Т0 - температура плавления массивного образца.

Используя экспериментальные результаты из работы [11], можно по нашей формуле (3) определить поверхностное натяжение малых частиц золота. При температуре Т = 1040 °С величина поверхностного натяжения золота оказалась равной: s = 1,312 Дж/м2. Эта величина незначительно отличается от величины поверхностного натяжения, полученной в методе «нулевой ползучести» (таблица 1). В работе [12] для нанокристаллов алюминия получена экспериментальная кривая, аналогичная кривой из работы [11]. Расчет величины поверхностного натяжения по нашей формуле (3) дал следующий результат: s = 1,070 Дж/м2.

Из формулы (2) получается линейная зависимость поверхностного натяжения от температуры:

                           (4)

Используя данные табл. 1, нетрудно вычислить коэффициент α. Если учесть погрешность измерений (табл. 1), то значение коэффициента равно α ≈ 10-3 Дж·м-2·К-1 для всех металлов. Таким образом, оценку поверхностного натяжения металлов можно сделать по их температуре плавления и коэффициенту α по формуле (4). Из табл. 1 следует, что в жидкой фазе металлов поверхностное натяжение уменьшается для всех металлов примерно в 10 раз.

Постоянная Толмена

Основы термодинамики криволинейных границ раздела были заложены еще Дж. Гиббсом [13]. Затем Р.Толмен и его последователи свели эту проблему к учету размерной зависимости поверхностного натяжения (см., например, [14]). В 1949 г. Р. Толмен вывел уравнение для поверхностного натяжения σ:

            (5)

Здесь σ - поверхностное натяжение для плоской поверхности; Rs - радиус поверхности натяжения; δ > 0 - расстояние между эквимолекулярной разделяющей поверхностью и поверхностью натяжения для плоской границы. Порядок величины параметра δ, называемого толменовской длиной или постоянной Толмена, должен быть сравним с эффективным молекулярным диаметром а. При R >> δ формула Толмена может быть переписана в виде:

               (6)

Сравнение формул (6) и (1) приводит к результату: δ = d/2. Таким образом, мы имеем возможность экспериментального определения постоянной Толмена по зависимости (1) и соотношению (2).

Щелочные металлы

В табл. 2 представлены результаты расчета поверхностного натяжения σ и постоянной Толмена δ для щелочных металлов. Здесь Тпл - температура плавления металла; σпл - поверхностное натяжение при температуре, близкой к температуре плавления; σ300 - поверхностное натяжение при комнатной температуре; υ - молярный объем.

Таблица 2

Поверхностное натяжение и постоянная Толмена щелочных металлов

Металл

Тпл, К

σпл, Дж/м2

σ300, Дж/м2

d, нм

υ, см3/моль

δ, нм

Li

452

0,452

0,133

1,4

13,1

0,70

Na

371

0,371

0,110

2,1

23,7

1,05

K

337

0,337

0,101

3,7

45,5

1,84

Rb

312

0,312

0,093

4,2

56,2

2,10

Cs

302

0,302

0,091

5,2

71,1

2,60

Из табл. 2 видно, что в ряду Li → Cs d и δ увеличиваются почти в 4 раза.

Щелочноземельные металлы

Таблица 3

Поверхностное натяжение и постоянная Толмена щелочноземельных металлов

Металл

Тпл, К

σпл, Дж/м2

σ300, Дж/м2

d, нм

υ, см3/моль

δ, нм

Be

1558

1,558

0,463

1,8

4,84

0,90

Mg

923

0,923

0,276

3,1

14,0

1,55

Ca

1118

1,118

0,335

7,0

26,02

3,50

Sr

1030

1,030

0,307

8,3

33,7

4,15

Ba

983

0,983

0,295

8,9

37,62

4,45

Из табл. 3 видно, что в ряду Be → Ba значения d и δ увеличиваются чуть больше, чем в 4 раза.

Подгруппа бора

Таблица 4

Поверхностное натяжение и постоянная Толмена металлов подгруппы бора

Металл

Тпл, К

σпл, Дж/м2

σ300, Дж/м2

d, нм

υ, см3/моль

δ, нм

Al

933

0,933

0,277

2,2

9,9

1,1

Ga

302,8

0,303

0,095

0,9

11,8

0,45

In

429

0,429

0,127

1,6

15,7

0,80

Tl

576

0,576

0,173

2,4

17,3

1,20

В случае металлов подгруппы бора значения d и δ увеличиваются в ряду Ga → Tl.

Подгруппа углерода

Таблица 5

Поверхностное натяжение и постоянная Толмена металлов подгруппы углерода

Металл

Тпл, К

σпл, Дж/м2

σ300, Дж/м2

d, нм

υ, см3/моль

δ, нм

Si

1686

1,686

0,504

4,9

12,1

2,45

Ge

1231

1,231

0,336

4,0

13,6

2,00

Sn

505

0,505

0,153

2,0

16,3

1,00

Pb

600

0,600

0,178

2,6

18,2

1,30

Здесь кремний и германий являются полупроводниками и величина d и δ уменьшается. Для олова и свинца изменение величин d и δ аналогично другим металлам.

Халькогены

Таблица 6

Поверхностное натяжение и постоянная Толмена металлов халькогенов

Металл

Тпл, К

σпл, Дж/м2

σ300, Дж/м2

d, нм

υ, см3/моль

δ, нм

Se

493

0,493

0,144

1,9

16,4

0,95

Te

725

0,725

0,214

3,5

20,4

1,75

Здесь различия в величинах d и δ - почти в 2 раза.

Подгруппа меди

Таблица 7

Поверхностное натяжение и постоянная Толмена металлов подгруппы меди

Металл

Тпл, К

σпл, Дж/м2

σ300, Дж/м2

d, нм

υ, см3/моль

δ, нм

Cu

1356

1,356

0,402

2,3

7,12

1,15

Ag

1234

1,234

0,375

3,1

10,3

1,55

Au

1336

1,336

0,403

3,3

10,2

1,65

Здесь различия в величинах d и δ не столь значительны, хотя общая закономерность соблюдается.

Подгруппа цинка

Таблица 8

Поверхностное натяжение и постоянная Толмена металлов подгруппы цинка

Металл

Тпл, К

σпл, Дж/м2

σ300, Дж/м2

d, нм

υ, см3/моль

δ, нм

Zn

693

0,693

0,203

1,5

9,2

0,75

Cd

594

0,594

0,182

1,9

13,0

0,95

Hg

234

0,234

0,069

0,83

14,8

0,41

Здесь закономерность в величинах d и δ нарушается для ртути, которая находится в жидком состоянии.

Подгруппа хрома

Таблица 9

Поверхностное натяжение и постоянная Толмена металлов подгруппы хрома

Металл

Тпл, К

σпл, Дж/м2

σ300, Дж/м2

d, нм

υ, см3/моль

δ, нм

Cr

2173

2,173

0,657

3,8

7,2

1,90

Mo

2873

2,873

0,861

6,5

9,4

3,25

W

3673

3,673

1,110

8,4

9,5

4,20

Здесь различия в величинах d и δ - почти в 2 раза.

Подгруппа марганца

Таблица 10

Поверхностное натяжение и постоянная Толмена металлов подгруппы марганца

Металл

Тпл, К

σпл, Дж/м2

σ300, Дж/м2

d, нм

υ, см3/моль

δ, нм

Mn

1517

1,517

0,459

2,8

7,6

1,40

Tc

2473

2,473

0,738

5,1

8,6

2,55

Re

3423

3,423

0,993

7,1

8,9

3,55

Закономерность в величинах d и δ аналогична предыдущим случаям.

Подгруппа железа

Таблица 11

Поверхностное натяжение и постоянная Толмена металлов подгруппы железа

Металл

Тпл, К

σпл, Дж/м2

σ300, Дж/м2

d, нм

υ, см3/моль

δ, нм

Fe

1808

1,808

0,544

3,1

7,1

1,55

Co

1763

1,763

0,520

2,8

6,7

1,40

Ni

1726

1,726

0,509

2,7

6,6

1,35

Здесь наблюдается обратная закономерность в величинах d и δ.

Лантаноиды

Лантаноиды - семейство из 14 химических элементов III группы 6-го периода периодической таблицы. В табл. 12 представлены результаты расчета поверхностного натяжения σ и постоянной Толмена δ для лантаноидов.

Таблица 12

Поверхностное натяжение и постоянная Толмена лантаноидов

Металл

Тпл, К

σпл, Дж/м2

σ300, Дж/м2

d, нм

υ, см3/моль

δ, нм

Ce

1077

1,077

0,325

5,4

20,70

2,70

Pr

1208

1,208

0,359

6,0

20,82

3,00

Nd

1298

1,298

0,387

6,4

20,58

3,20

Sm

1325

1,325

0,393

6,3

19,95

3,15

Eu

1175

1,175

0,351

8,3

29,42

4,15

Gd

1585

1,585

0,473

7,6

19,98

3,80

Tb

1631

1,631

0,486

7,5

19,21

3,25

Dy

1680

1,680

0,497

7,6

19,04

3,80

Ho

1734

1,734

0,518

7,8

18,74

3,90

Er

1770

1,770

0,526

7,8

18,47

3,90

Tm

1818

1,818

0,542

7,4

17,01

3,70

Yb

1097

1,097

0,326

6,5

24,80

3,25

Lu

1925

1,925

0,574

8,2

17,78

4,10

В случае лантаноидов монотонного увеличения параметров d и δ не наблюдается. Эти значения примерно равны для Pr → Sm, Gd → Tm, Eu и Lu. Несколько отличные значения имеет Ce. В диапазон значений параметров d и δ для лантаноидов попадают W (табл. 9) и Re (табл. 10).

Актиноиды

Таблица 13

Поверхностное натяжение и постоянная Толмена актиноидов

Металл

Тпл, К

σпл, Дж/м2

σ300, Дж/м2

d, нм

υ, см3/моль

δ, нм

Ac

1323

1,323

0,393

7,1

22,5

3,55

Th

2023

2,023

0,607

9,6

19,7

4,80

U

1405

1,405

0,418

4,2

12,5

2,10

Np

913

0,913

0,277

2,6

11,7

1,30

Pu

910

0,910

0,273

2,7

12,3

1,35

Am

1273

1,273

0,383

6,4

20,8

3,20

Bk

1298

1,298

0,388

5,2

16,7

2,60

Как и в случае лантаноидов монотонного изменения параметров d и δ не наблюдается, хотя их значения близки к группе лантаноидов.

Заключение

Суммируя результаты проведенных исследований, можно сделать следующие основные выводы:

- для 55 элементов периодической системы рассчитаны поверхностное натяжение, критический радиус и постоянная Толмена;

- для металлов с низкой температурой плавления величина поверхностного натяжения составляет доли Дж/м2, а для тугоплавких - единицы Дж/м2;

- критический радиус d хаpaктеризует внутренние размерные эффекты и не превышает 10 нм для исследованных металлов.

Список литературы

  1. Альмяшева О.В., Гусаров В.В., Лебедев О.В. Поверхностные явления: учебное пособие. - СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2004 - 28 с.
  2. Слобняков Н.Ю., Самсонов В.М., Базулев А.Н. и др. О поверхностном натяжении нанокристаллов различной природы // Конденсированные среды и межфазные границы. - 2007. - Том 9, №3. - С. 250-255.
  3. Рехвиашвили С.Ш., Киштикова Е.В., Кармокова Р.Ю. и др. К расчету постоянной Толмена // Письма в ЖТФ. - 2007. - Том 33, Вып. 2. - С. 1-7.
  4. Гохштейн А.Я. Поверхностное натяжение твердых тел и адсорбция. - М.: Наука, 1976. - 256 с.
  5. Юров В.М. и др. Способ измерения поверхностного натяжения твердых тел: Патент РК №57691. - Астана, 2009.
  6. Юров В.М. и др. Способ измерения поверхностного натяжения и плотности поверхностных состояний диэлектриков: Патент РК №58155. - Астана, 2009.
  7. Юров В.М. и др. Способ измерения поверхностного натяжения магнитных материалов. Патент РК №58158. - Астана, 2009.
  8. Ролдугин В.И. Физикохимия поверхности. - Долгопрудный: Издательский Дом «Интеллект», 2008. - 568 с.
  9. Юров В.М. Поверхностное натяжение твердых тел // Вестник КарГУ, сер. Физика. - 2007. - № 1 (45). - С. 23-29.
  10. Jurov V.M. Superfecial tension of pure metals // Eurasian Physical Technical journal. - 2011. - Vol. 8, № 1(15). - P. 10-14.
  11. Оура К., Лифшиц В.Г., Саранин А.А. и др. Введение в физику поверхности. - М.: Наука, 2006. - 490 с.
  12. Kotlyar V.G., Zotov A.V., Saranin A.A, et al. // Phys. Rev. B. - 2002. - V. 66, №16, - P. 165-169.
  13. Гиббс Дж.В. Термодинамические работы. - М. Л.: ГИТТЛ, 1950. - 303 с.
  14. Tolman R.C. The effect of droplet size on surface tension // J. Chem. Phys. - 1949. - Vol. 17, №2. - P. 333-337.


О ВЛИЯНИИ ГЕОМАГНИТНОГО ПОЛЯ (ГМП) НА БИОТУ

О ВЛИЯНИИ ГЕОМАГНИТНОГО ПОЛЯ (ГМП) НА БИОТУ Статья в формате PDF 85 KB...

21 03 2023 10:13:54

ВОПРОСЫ ПАТОГЕНЕЗА МИОМЫ МАТКИ

ВОПРОСЫ ПАТОГЕНЕЗА МИОМЫ МАТКИ Статья в формате PDF 117 KB...

15 03 2023 2:17:55

ИННОВАЦИОННАЯ СТРАТЕГИЯ РЕГИОНАЛЬНОГО УРОВНЯ

ИННОВАЦИОННАЯ СТРАТЕГИЯ РЕГИОНАЛЬНОГО УРОВНЯ Статья в формате PDF 131 KB...

07 03 2023 15:13:33

ИММУННЫЙ ГОМЕОСТАЗ У БОЛЬНЫХ, ПРООПЕРИРОВАННЫХ ПО ПОВОДУ УЗЛОВОГО ЗОБА

ИММУННЫЙ ГОМЕОСТАЗ У БОЛЬНЫХ, ПРООПЕРИРОВАННЫХ ПО ПОВОДУ УЗЛОВОГО ЗОБА Изучено состояние иммунной системы у прооперированных больных с узловыми образованиями щитовидной железы. Установлено достоверное снижение абсолютных показателей иммунитета в клеточных и гумopaльных звеньях. В основе механизмов нарушений регуляции иммунного ответа лежат как модуляции свойств отдельных популяций иммуннокомпетентных клеток, так и на молекулярно-генетическом уровне за счет изменения экспрессии генов цитокинов. Выявлена тесная взаимозависимость нейроэндокринной и иммунной систем в реабилитации иммунного гомеостаза в пост операционный период. Для оценки иммунного статуса определялся субпопуляционный состав лимфацитов периферической крови и иммуноглобулины. Исследована клиническая эффективность комплексного применения иммуномодуляторов и тиреоидных препаратов. Обосновано применение в комплексном лечении послеоперационных пациентов с узловым зобом иммунофана, нуклеината натрия в комплексе с гормональными препаратами. ...

04 03 2023 17:20:19

ОТНОШЕНИЕ ЖАБРОНОГОГО РАЧКА СТРЕПТОЦЕФАЛЮСА (STREPTOCEPHALUS TORVICORNIS) К ОСНОВНЫМ ФАКТОРАМ СРЕДЫ

ОТНОШЕНИЕ ЖАБРОНОГОГО РАЧКА СТРЕПТОЦЕФАЛЮСА (STREPTOCEPHALUS TORVICORNIS) К ОСНОВНЫМ ФАКТОРАМ СРЕДЫ В статье описаны эксперименты по изучению влияния основных факторов среды на жизнедеятельность жабронога стрептоцефалюса. Установлено, что наиболее оптимальная температура воды для роста и развития рачка и созревания его яиц составляет 15 - 25°С. Этот вид является исключительно пресноводным и чувствительно реагирует даже на небольшое повышение солености (в пределах 1 - 2%о). Однако жаброног способен выдерживать значительный дефицит кислорода в воде (2,5 - 2 мг/л). ...

02 03 2023 6:53:34

МЕХАНИЗМЫ РЕАЛИЗАЦИИ РАЗЛИЧНЫХ МЕТОДИК САМОУПРАВЛЕНИЯ С БИОЛОГИЧЕСКОЙ ОБРАТНОЙ СВЯЗЬЮ

МЕХАНИЗМЫ РЕАЛИЗАЦИИ РАЗЛИЧНЫХ МЕТОДИК САМОУПРАВЛЕНИЯ С БИОЛОГИЧЕСКОЙ ОБРАТНОЙ СВЯЗЬЮ Проводился анализ изменений биоэлектрической активности головного мозга и сверхмедленной активности в нервной, дыхательной и сердечно-сосудистой системах в процессе адаптивного биоуправления с биологической обратной связью по параметрам церебральной гемодинамики и медитации. Осуществлялась регистрация сверхмедленной активности нервной и сердечно-сосудистой систем и локализация биоэлектрической активности нервной системы. Выявлено вовлечение различных мозговых структур в реализацию поведенческих стратегий в группах обучившихся различным видам самоуправления, что говорит о различии механизмов достижения конечного результата. Полученные результаты свидетельствуют о вовлечении кардиореспираторной синхронизации в изменение биоэлектрической активности только при релаксации с помощью адаптивного биоуправления. Осуществлена проверка резонансной гипотезы релаксации, согласно которой при совпадении частот изменения дыхания, биоэлектрической активности мозга, сердечного ритма и сосудистого тонуса происходит усиление активности в вовлекаемых в резонансный ответ структурах. ...

28 02 2023 20:16:47

ИНТЕГРАЦИЯ. РУССКИЕ ВОПРОСЫ – ЕВРОПЕЙСКИЕ ОТВЕТЫ

ИНТЕГРАЦИЯ. РУССКИЕ ВОПРОСЫ – ЕВРОПЕЙСКИЕ ОТВЕТЫ Статья в формате PDF 132 KB...

27 02 2023 7:28:10

Результаты обследования КД при заболеваниях глотки

Статья в формате PDF 122 KB...

25 02 2023 6:40:43

О ПИЩЕВЫХ ДОБАВКАХ В ЙОГУРТАХ И ШОКОЛАДЕ

О ПИЩЕВЫХ ДОБАВКАХ В ЙОГУРТАХ И ШОКОЛАДЕ Статья в формате PDF 275 KB...

23 02 2023 2:19:12

ВЛИЯНИЕ ОЗОНИРОВАННОГО РАСТВОРА КРЕБСА НА ТОНИЧЕСКУЮ АКТИВНОСТЬ И Β-АДРЕНОРЕАКТИВНОСТЬ ГЛАДКИХ МЫШЦ ТРАХЕИ КРОВЫ

ВЛИЯНИЕ ОЗОНИРОВАННОГО РАСТВОРА КРЕБСА НА ТОНИЧЕСКУЮ АКТИВНОСТЬ И Β-АДРЕНОРЕАКТИВНОСТЬ ГЛАДКИХ МЫШЦ ТРАХЕИ КРОВЫ Озонированный (5х10 -7 г/мл) раствор Кребса не влиял на базальный тонус продольных полосок (n=21) трахеи 5 коров, а также на их тонус, вызванный ацетилхолином (10 -6 г/мл), но в 43% опытов достоверно уменьшал релаксирующий эффект адреналина (10 -7 г/мл), т.е. проявлял β-адреноблокирующий эффект. Это свойство озона необходимо учитывать при нормировании условий труда в производствах с повышенным образованием озона и при озонотерапии. ...

22 02 2023 2:25:37

ДЕФИЦИТ ЙОДА В РОЛИ ГЛОБАЛЬНОГО ИНДИКАТОРА ЗДОРОВЬЯ

ДЕФИЦИТ ЙОДА В РОЛИ ГЛОБАЛЬНОГО ИНДИКАТОРА ЗДОРОВЬЯ Риск развития заболевания может оцениваться по показателям на уровне, хаpaктеризующем хронические пороговые эффекты. Исходя из этих данных, в качестве «индикаторных» состояний выделяется пониженное/повышенное содержание йода в организме обследуемого. В качестве «индикаторных» точек в концепции HEADLAMP для подтверждения заболеваний, хаpaктеризующих эффект недостатка йода в организме, могут выступать изменения в щитовидной железе на субклиническом уровне. Указанные параметры можно оценить на уровне лабораторной базы первичной медико-санитарной помощи при обследованиях населения. Цель HEADLAMP в оценке связи состояния здоровья населения с действием факторов окружающем среды значительно упростить и ускорить обоснованность выбора управленческих решений. ...

18 02 2023 20:41:33

ИСПОЛЬЗОВАНИЕ ПРИРОДНЫХ РЕСУРСОВ НА ОАО «ДРОБМАШ»

ИСПОЛЬЗОВАНИЕ ПРИРОДНЫХ РЕСУРСОВ НА ОАО «ДРОБМАШ» Статья в формате PDF 99 KB...

16 02 2023 12:43:54

ПРОБЛЕМЫ МЕНЕДЖМЕНТА РЕКРЕАЦИОННЫХ ЗОН

ПРОБЛЕМЫ МЕНЕДЖМЕНТА РЕКРЕАЦИОННЫХ ЗОН Статья в формате PDF 151 KB...

15 02 2023 1:19:51

КЛОЧКОВ ЕВГЕНИЙ ПЕТРОВИЧ

КЛОЧКОВ ЕВГЕНИЙ ПЕТРОВИЧ Статья в формате PDF 189 KB...

13 02 2023 3:54:37

СТОЛЯРОВ СТАНИСЛАВ ПЕТРОВИЧ

СТОЛЯРОВ СТАНИСЛАВ ПЕТРОВИЧ Статья в формате PDF 225 KB...

11 02 2023 6:51:47

EPIDEMIOLOGY OF ALLERGIC R HINITS IN PUPILS OF THE REPUBLIC SAKHA(YAKUTIA)

EPIDEMIOLOGY OF ALLERGIC R HINITS IN PUPILS OF THE REPUBLIC SAKHA(YAKUTIA) Статья в формате PDF 99 KB...

09 02 2023 2:41:36

ОСНОВЫ НАУЧНЫХ ИССЛЕДОВАНИЙ

ОСНОВЫ НАУЧНЫХ ИССЛЕДОВАНИЙ Статья в формате PDF 370 KB...

07 02 2023 17:11:40

ПЕРСИСТЕНТНЫЕ СВОЙСТВА МИКРОФЛОРЫ КОЖИ И КИШЕЧНИКА

ПЕРСИСТЕНТНЫЕ СВОЙСТВА МИКРОФЛОРЫ КОЖИ И КИШЕЧНИКА Статья в формате PDF 111 KB...

06 02 2023 17:29:31

Бозаджиев Владимир Лукьянович

Бозаджиев Владимир Лукьянович Статья в формате PDF 144 KB...

05 02 2023 2:46:23

МЯСНАЯ ПРОДУКТИВНОСТЬ БЫЧКОВ ПРИ ВВЕДЕНИИ В РАЦИОН ХИТОЗАНСОДЕРЖАЩИХ ДОБАВОК

МЯСНАЯ ПРОДУКТИВНОСТЬ БЫЧКОВ ПРИ ВВЕДЕНИИ В РАЦИОН ХИТОЗАНСОДЕРЖАЩИХ ДОБАВОК Применение хитинсодержащих препаратов оказывает положительное влияние на мясную продуктивность бычков, а превосходство по хаpaктеристикам химического состава и энергетической ценности мякоти имеют бычки, получавшие сукцинат хитозана. ...

03 02 2023 15:45:36

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::

МИКРОЭКОЛОГИЯ ЧЕЛОВЕКА (ЧАСТЬ I)

С экологических позиций излагается представление о человеке как метасистеме, состоящей из макроскопического (тело) и микроскопического (микробиота) компонентов. Последний определяется как биоценоз микроорганизмов — бактерий, простейших, микроскопических грибов и вирусов, встречающийся у здоровых людей. Приводятся некоторые количественные хаpaктеристики микробиоты человека: общее число микроорганизмов, суммарная биомасса, процентное содержание облигатной, факультативной и транзиторной составляющих, время, за которое происходит смена генерации микроорганизмов. Рассматриваются главные системоообразующие факторы, обеспечивающие целостность микробиоты: структурный, метаболический, генетический и информационный. Анализируются взаимоотношения микробиоты и макроорганизма в нормальных физиологических условиях и при патологии. Обсуждаются механизмы развития дисбиозов и патогенетически обоснованные подходы к их коррекции.

ЭХОГРАФИЧЕСКИЕ МАРКЕРЫ ВНУТРИУТРОБНОЙ ИНФЕКЦИИ

Одной из важнейших проблем современной перинатологии является прогрессирующий рост инфекционной патологии у плода и новорожденного. Целью данной работы являлась комплексная ультразвуковая оценка фето-плацентарной системы у беременных с высоким инфекционным индексом для прогнозирования степени тяжести внутриутробного инфицирования у новорожденного. Обследовано 123 беременных в сроке гестации 30-36 недель. В зависимости от тяжести состояния все новорожденные ретроспективно были разделены на 4 группы. В контрольную (1 группа) вошли новорожденные от матерей с неосложненной беременностью, состояние ребенка при рождении удовлетворительное. В основную (1 – 4 группы) вошли новорожденные от матерей с высоким инфекционным индексом, с локальными или генерализованными проявлениями внутриутробной инфекции. В результате проведенного исследования выявлены эхографические маркеры амнионита, плацентита и собственно инфекционного поражения плода, которое наиболее значимо для прогнозирования рождения ребенка с ВУИ. Патологические показатели биофизической активности, допплерометрия отражают системные нарушения в состоянии плода, его дисстресс. Таким образом, чем больше эхографических маркеров внутриутробного инфицирования встречается у плода, тем более вероятно рождение ребенка с признаками ВУИ.

АНАТОМИЯ УРЕТРОВЕЗИКАЛЬНОГО СЕГМЕНТА И ПРЕДСТАТЕЛЬНОЙ ЖЕЛЕЗЫ У МУЖЧИН, ОТНОСЯЩИХСЯ К РАЗЛИЧНЫМ РАСАМ

Проведено исследование 63 препаратов уретровезикального сегмента и предстательной железы мужчин первого зрелого периода, относящихся к различным расам: европеоидам и монголоидам. Результаты: 1. межмочеточниковая складка Мерсье, расстояние от внутреннего отверстия уретры до устья мочеточника, площадь треугольника Льето достоверно больше у монголоидов при отсутствии достоверной разницы показателей «уретрального» угла треугольника Льето. 2. уретровезикальный угол, длина супрамонтанной части простатического отдела уретры и длина всего простатического отдела уретры у монголоидов достоверно больше. 3. семенной бугорок у представителей монголоидной расы в 85,7% представлял собой утолщение центральной складки простатического отдела уретры, наличие простатической маточки не зарегистрировано ни в одном случае. Семенной бугорок представителей европеоидной расы был более выражен и представлял собой анатомическое образование бόльшими размерами, простатическая маточка зарегистрирована в 60% случаев. 4. общий объем простаты у европеоидов и монголоидов не отличался, однако, центральная ее доля у монголоидов достоверно больше, а переходная достоверно меньше.

МЕХАНИЗМЫ ВЛИЯНИЯ НИЗКОИНТЕНСИВНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ КРАЙНЕ ВЫСОКОЧАСТОТНОГО И ТЕРАГЕРЦОВОГО ДИАПАЗОНОВ НА ПРОЦЕССЫ РЕПАРАТИВНОЙ РЕГЕНЕРАЦИИ СОЕДИНИТЕЛЬНОЙ ТКАНИ

Представлен научный обзор литературных данных о репаративной регенерации соединительной ткани и возможного регуляторного влияния на этот процесс с помощью облучения рефлексогенных кожных зон электромагнитным излучением крайне высокочастотного и терагерцового диапазонов. Акцентируется внимание на значении нейровегетативного компонента в ходе адаптационных реакций соединительной ткани к повреждению с помощью современных стресс-лимитирующих реабилитационных технологий. Анализируются современные гипотезы предполагаемого механизма действия корригирующих методик на основе электромагнитных стимулов крайне высокочастотного и терагерцового диапазонов на процессы межклеточных нейроиммунноэндокринных взаимодействий. Обосновывается необходимость дальнейших экспериментальных исследований на клеточном уровне in vitro для подбора оптимальных параметров воздействия с целью регуляции пролиферативной и функциональной клеточной активности и разработки новых приборов с шумовым диапазоном излучения.

Анализ АТФ-зависимых и кальциевых механизмов в реализации нейротропного действия аспирина и его производных

Статья посвящена исследованию механизмов нейротропного действия аспирина, ацетилсалицилатов кобальта и цинка. Показано, что наличие аденозинтрифосфата во внеклеточном прострaнcтве существенно модифицирует нейротропные эффекты салицилатов. Сочетанное приложение аденозинтрифосфата с аспирином устраняет угнетение импульсной активности нейронов, вызванное индивидуальным раствором этого препарата, а совместная экспозиция аденозинтрифосфата с ацетилсалицилатами кобальта и цинка, наоборот, усиливает их активирующие эффекты. При блокировании CdCl2 и BaCl2 поступления Са2 + в нейроплазму из внеклеточной среды и внутриклеточных депо выявлено, что кальциевые механизмы не участвуют в нейротропных эффектах исследуемых салицилатов.