РАЗМЕРНЫЕ ЭФФЕКТЫ И ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ ЧИСТЫХ МЕТАЛЛОВ
Из 118 химических элементов, открытых на сегодняшний день, 96 относятся к металлам. Несмотря на появление большого количества неметаллических материалов, их значение в технике и в жизни человека остается огромным. При работе различных машин и механизмов во многих случаях основную роль играет поверхность металла и физико-химические процессы на его поверхности.
В настоящей работе приведены экспериментальные и теоретические результаты по поверхностному натяжению чистых
металлов.
Постоянная Толмена δ является основным параметром в термодинамике размерных эффектов. Физически она означает расстояние от поверхности натяжения до эквимолекулярной поверхности [1]. В большинстве работ считается, что экспериментальное определение постоянной Толмена принципиально невозможно, поэтому основной упор делается на ее расчетах с использованием численного моделирования [2]. В работе [3] получено выражение для постоянной Толмена:
где h - высота атомного монослоя, α показывает, во сколько раз среднеквадратичное смещение атомов на поверхности отличается от такового в объеме.
Рассчитанная по этой формуле постоянная Толмена для золота оказалась равной 0,275 nm. В настоящей работе мы рассмотрим методы экспериментального определения постоянной Толмена.
Поверхностное натяжение твердых тел
Экспериментальное определение поверхностного натяжения твердых тел затруднено тем, что их молекулы (атомы) лишены возможности свободно перемещаться. Исключение составляет пластическое течение металлов при температурах, близких к точке плавления [4].
Недавно нами были предложены методы экспериментального определения поверхностного натяжения твердых диэлектриков и магнитных материалов, основанные на универсальной зависимости физического свойства твердого тела от его размеров [5-7]. В этой работе мы проводим сравнение нашего метода с методом «нулевой ползучести».
В методе «нулевой ползучести» (метод Таммана-Удина) образец (длинной нити, фольги) нагревают до достаточно высокой температуры, так что он начинает сокращаться по длине под действием поверхностных напряжений. К образцу прикладывается внешняя сила, поддерживающая неизменной форму образца. По величине этой силы определяют величину поверхностного натяжения. Экспериментальные данные для некоторых металлов взяты из работы [8] и приведены в табл. 1.
В работах [9-10] и ряде других нами получена формула, которая описывает зависимость физического свойства твердого тела от его размера:
(1)
Здесь А0 - физическое свойство массивного образца; A(r) - физическое свойство малой частицы или тонкой пленки; d - критический радиус или критическая толщина пленки, начиная с которого проявляются размерные эффекты. Для критического радиуса нами получена формула:
(2)
Здесь σ - поверхностное натяжение массивного образца; υ - молярный объем; R - газовая постоянная; Т - температура.
В монографии японских и российских физиков [11] считается, что уменьшение температуры плавления малых частиц связано с тем, что атомы на поверхности имеют меньшее число соседей, чем в объеме, следовательно, менее крепко связаны и менее ограничены в своем тепловом движении. Там же отмечается, что обычно уменьшение температуры нанокристалла обратно пропорционально его размеру. Однако теории этого эффекта
пока нет.
Таблица 1
Экспериментальные данные по поверхностному натяжению некоторых металлов в твердой и жидкой фазах и их сравнение с нашим методом
Металл |
Температура, °С |
σ, Дж/м2 [8] |
σ, Дж/м2 |
σ, Дж/м2 |
Ag |
930 |
1,14 ± 0,09 |
1,234 |
0,126 |
Al |
180 |
1,14 ± 0,2 |
1,070 |
0,093 |
Au |
1040 |
1,37 ± 0,15 |
1,312 |
0,132 |
Cu |
900 |
1,75 ± 0,09 |
1,356 |
0,177 |
Pt |
1310 |
2,3 ± 0,8 |
- |
0,208 |
W |
1750 |
2,9 ± 0,3 |
2,873 |
- |
Zn |
380 |
0,83 |
0,693 |
- |
Если воспользоваться аналогией скалярных полей, то мы получаем для температуры плавления малых частиц уравнение, аналогичное (1):
(3)
где Т0 - температура плавления массивного образца.
Используя экспериментальные результаты из работы [11], можно по нашей формуле (3) определить поверхностное натяжение малых частиц золота. При температуре Т = 1040 °С величина поверхностного натяжения золота оказалась равной: s = 1,312 Дж/м2. Эта величина незначительно отличается от величины поверхностного натяжения, полученной в методе «нулевой ползучести» (таблица 1). В работе [12] для нанокристаллов алюминия получена экспериментальная кривая, аналогичная кривой из работы [11]. Расчет величины поверхностного натяжения по нашей формуле (3) дал следующий результат: s = 1,070 Дж/м2.
Из формулы (2) получается линейная зависимость поверхностного натяжения от температуры:
(4)
Используя данные табл. 1, нетрудно вычислить коэффициент α. Если учесть погрешность измерений (табл. 1), то значение коэффициента равно α ≈ 10-3 Дж·м-2·К-1 для всех металлов. Таким образом, оценку поверхностного натяжения металлов можно сделать по их температуре плавления и коэффициенту α по формуле (4). Из табл. 1 следует, что в жидкой фазе металлов поверхностное натяжение уменьшается для всех металлов примерно в 10 раз.
Постоянная Толмена
Основы термодинамики криволинейных границ раздела были заложены еще Дж. Гиббсом [13]. Затем Р.Толмен и его последователи свели эту проблему к учету размерной зависимости поверхностного натяжения (см., например, [14]). В 1949 г. Р. Толмен вывел уравнение для поверхностного натяжения σ:
(5)
Здесь σ∞ - поверхностное натяжение для плоской поверхности; Rs - радиус поверхности натяжения; δ > 0 - расстояние между эквимолекулярной разделяющей поверхностью и поверхностью натяжения для плоской границы. Порядок величины параметра δ, называемого толменовской длиной или постоянной Толмена, должен быть сравним с эффективным молекулярным диаметром а. При R >> δ формула Толмена может быть переписана в виде:
(6)
Сравнение формул (6) и (1) приводит к результату: δ = d/2. Таким образом, мы имеем возможность экспериментального определения постоянной Толмена по зависимости (1) и соотношению (2).
Щелочные металлы
В табл. 2 представлены результаты расчета поверхностного натяжения σ и постоянной Толмена δ для щелочных металлов. Здесь Тпл - температура плавления металла; σпл - поверхностное натяжение при температуре, близкой к температуре плавления; σ300 - поверхностное натяжение при комнатной температуре; υ - молярный объем.
Таблица 2
Поверхностное натяжение и постоянная Толмена щелочных металлов
Металл |
Тпл, К |
σпл, Дж/м2 |
σ300, Дж/м2 |
d, нм |
υ, см3/моль |
δ, нм |
Li |
452 |
0,452 |
0,133 |
1,4 |
13,1 |
0,70 |
Na |
371 |
0,371 |
0,110 |
2,1 |
23,7 |
1,05 |
K |
337 |
0,337 |
0,101 |
3,7 |
45,5 |
1,84 |
Rb |
312 |
0,312 |
0,093 |
4,2 |
56,2 |
2,10 |
Cs |
302 |
0,302 |
0,091 |
5,2 |
71,1 |
2,60 |
Из табл. 2 видно, что в ряду Li → Cs d и δ увеличиваются почти в 4 раза.
Щелочноземельные металлы
Таблица 3
Поверхностное натяжение и постоянная Толмена щелочноземельных металлов
Металл |
Тпл, К |
σпл, Дж/м2 |
σ300, Дж/м2 |
d, нм |
υ, см3/моль |
δ, нм |
Be |
1558 |
1,558 |
0,463 |
1,8 |
4,84 |
0,90 |
Mg |
923 |
0,923 |
0,276 |
3,1 |
14,0 |
1,55 |
Ca |
1118 |
1,118 |
0,335 |
7,0 |
26,02 |
3,50 |
Sr |
1030 |
1,030 |
0,307 |
8,3 |
33,7 |
4,15 |
Ba |
983 |
0,983 |
0,295 |
8,9 |
37,62 |
4,45 |
Из табл. 3 видно, что в ряду Be → Ba значения d и δ увеличиваются чуть больше, чем в 4 раза.
Подгруппа бора
Таблица 4
Поверхностное натяжение и постоянная Толмена металлов подгруппы бора
Металл |
Тпл, К |
σпл, Дж/м2 |
σ300, Дж/м2 |
d, нм |
υ, см3/моль |
δ, нм |
Al |
933 |
0,933 |
0,277 |
2,2 |
9,9 |
1,1 |
Ga |
302,8 |
0,303 |
0,095 |
0,9 |
11,8 |
0,45 |
In |
429 |
0,429 |
0,127 |
1,6 |
15,7 |
0,80 |
Tl |
576 |
0,576 |
0,173 |
2,4 |
17,3 |
1,20 |
В случае металлов подгруппы бора значения d и δ увеличиваются в ряду Ga → Tl.
Подгруппа углерода
Таблица 5
Поверхностное натяжение и постоянная Толмена металлов подгруппы углерода
Металл |
Тпл, К |
σпл, Дж/м2 |
σ300, Дж/м2 |
d, нм |
υ, см3/моль |
δ, нм |
Si |
1686 |
1,686 |
0,504 |
4,9 |
12,1 |
2,45 |
Ge |
1231 |
1,231 |
0,336 |
4,0 |
13,6 |
2,00 |
Sn |
505 |
0,505 |
0,153 |
2,0 |
16,3 |
1,00 |
Pb |
600 |
0,600 |
0,178 |
2,6 |
18,2 |
1,30 |
Здесь кремний и германий являются полупроводниками и величина d и δ уменьшается. Для олова и свинца изменение величин d и δ аналогично другим металлам.
Халькогены
Таблица 6
Поверхностное натяжение и постоянная Толмена металлов халькогенов
Металл |
Тпл, К |
σпл, Дж/м2 |
σ300, Дж/м2 |
d, нм |
υ, см3/моль |
δ, нм |
Se |
493 |
0,493 |
0,144 |
1,9 |
16,4 |
0,95 |
Te |
725 |
0,725 |
0,214 |
3,5 |
20,4 |
1,75 |
Здесь различия в величинах d и δ - почти в 2 раза.
Подгруппа меди
Таблица 7
Поверхностное натяжение и постоянная Толмена металлов подгруппы меди
Металл |
Тпл, К |
σпл, Дж/м2 |
σ300, Дж/м2 |
d, нм |
υ, см3/моль |
δ, нм |
Cu |
1356 |
1,356 |
0,402 |
2,3 |
7,12 |
1,15 |
Ag |
1234 |
1,234 |
0,375 |
3,1 |
10,3 |
1,55 |
Au |
1336 |
1,336 |
0,403 |
3,3 |
10,2 |
1,65 |
Здесь различия в величинах d и δ не столь значительны, хотя общая закономерность соблюдается.
Подгруппа цинка
Таблица 8
Поверхностное натяжение и постоянная Толмена металлов подгруппы цинка
Металл |
Тпл, К |
σпл, Дж/м2 |
σ300, Дж/м2 |
d, нм |
υ, см3/моль |
δ, нм |
Zn |
693 |
0,693 |
0,203 |
1,5 |
9,2 |
0,75 |
Cd |
594 |
0,594 |
0,182 |
1,9 |
13,0 |
0,95 |
Hg |
234 |
0,234 |
0,069 |
0,83 |
14,8 |
0,41 |
Здесь закономерность в величинах d и δ нарушается для ртути, которая находится в жидком состоянии.
Подгруппа хрома
Таблица 9
Поверхностное натяжение и постоянная Толмена металлов подгруппы хрома
Металл |
Тпл, К |
σпл, Дж/м2 |
σ300, Дж/м2 |
d, нм |
υ, см3/моль |
δ, нм |
Cr |
2173 |
2,173 |
0,657 |
3,8 |
7,2 |
1,90 |
Mo |
2873 |
2,873 |
0,861 |
6,5 |
9,4 |
3,25 |
W |
3673 |
3,673 |
1,110 |
8,4 |
9,5 |
4,20 |
Здесь различия в величинах d и δ - почти в 2 раза.
Подгруппа марганца
Таблица 10
Поверхностное натяжение и постоянная Толмена металлов подгруппы марганца
Металл |
Тпл, К |
σпл, Дж/м2 |
σ300, Дж/м2 |
d, нм |
υ, см3/моль |
δ, нм |
Mn |
1517 |
1,517 |
0,459 |
2,8 |
7,6 |
1,40 |
Tc |
2473 |
2,473 |
0,738 |
5,1 |
8,6 |
2,55 |
Re |
3423 |
3,423 |
0,993 |
7,1 |
8,9 |
3,55 |
Закономерность в величинах d и δ аналогична предыдущим случаям.
Подгруппа железа
Таблица 11
Поверхностное натяжение и постоянная Толмена металлов подгруппы железа
Металл |
Тпл, К |
σпл, Дж/м2 |
σ300, Дж/м2 |
d, нм |
υ, см3/моль |
δ, нм |
Fe |
1808 |
1,808 |
0,544 |
3,1 |
7,1 |
1,55 |
Co |
1763 |
1,763 |
0,520 |
2,8 |
6,7 |
1,40 |
Ni |
1726 |
1,726 |
0,509 |
2,7 |
6,6 |
1,35 |
Здесь наблюдается обратная закономерность в величинах d и δ.
Лантаноиды
Лантаноиды - семейство из 14 химических элементов III группы 6-го периода периодической таблицы. В табл. 12 представлены результаты расчета поверхностного натяжения σ и постоянной Толмена δ для лантаноидов.
Таблица 12
Поверхностное натяжение и постоянная Толмена лантаноидов
Металл |
Тпл, К |
σпл, Дж/м2 |
σ300, Дж/м2 |
d, нм |
υ, см3/моль |
δ, нм |
Ce |
1077 |
1,077 |
0,325 |
5,4 |
20,70 |
2,70 |
Pr |
1208 |
1,208 |
0,359 |
6,0 |
20,82 |
3,00 |
Nd |
1298 |
1,298 |
0,387 |
6,4 |
20,58 |
3,20 |
Sm |
1325 |
1,325 |
0,393 |
6,3 |
19,95 |
3,15 |
Eu |
1175 |
1,175 |
0,351 |
8,3 |
29,42 |
4,15 |
Gd |
1585 |
1,585 |
0,473 |
7,6 |
19,98 |
3,80 |
Tb |
1631 |
1,631 |
0,486 |
7,5 |
19,21 |
3,25 |
Dy |
1680 |
1,680 |
0,497 |
7,6 |
19,04 |
3,80 |
Ho |
1734 |
1,734 |
0,518 |
7,8 |
18,74 |
3,90 |
Er |
1770 |
1,770 |
0,526 |
7,8 |
18,47 |
3,90 |
Tm |
1818 |
1,818 |
0,542 |
7,4 |
17,01 |
3,70 |
Yb |
1097 |
1,097 |
0,326 |
6,5 |
24,80 |
3,25 |
Lu |
1925 |
1,925 |
0,574 |
8,2 |
17,78 |
4,10 |
В случае лантаноидов монотонного увеличения параметров d и δ не наблюдается. Эти значения примерно равны для Pr → Sm, Gd → Tm, Eu и Lu. Несколько отличные значения имеет Ce. В диапазон значений параметров d и δ для лантаноидов попадают W (табл. 9) и Re (табл. 10).
Актиноиды
Таблица 13
Поверхностное натяжение и постоянная Толмена актиноидов
Металл |
Тпл, К |
σпл, Дж/м2 |
σ300, Дж/м2 |
d, нм |
υ, см3/моль |
δ, нм |
Ac |
1323 |
1,323 |
0,393 |
7,1 |
22,5 |
3,55 |
Th |
2023 |
2,023 |
0,607 |
9,6 |
19,7 |
4,80 |
U |
1405 |
1,405 |
0,418 |
4,2 |
12,5 |
2,10 |
Np |
913 |
0,913 |
0,277 |
2,6 |
11,7 |
1,30 |
Pu |
910 |
0,910 |
0,273 |
2,7 |
12,3 |
1,35 |
Am |
1273 |
1,273 |
0,383 |
6,4 |
20,8 |
3,20 |
Bk |
1298 |
1,298 |
0,388 |
5,2 |
16,7 |
2,60 |
Как и в случае лантаноидов монотонного изменения параметров d и δ не наблюдается, хотя их значения близки к группе лантаноидов.
Заключение
Суммируя результаты проведенных исследований, можно сделать следующие основные выводы:
- для 55 элементов периодической системы рассчитаны поверхностное натяжение, критический радиус и постоянная Толмена;
- для металлов с низкой температурой плавления величина поверхностного натяжения составляет доли Дж/м2, а для тугоплавких - единицы Дж/м2;
- критический радиус d хаpaктеризует внутренние размерные эффекты и не превышает 10 нм для исследованных металлов.
Список литературы
- Альмяшева О.В., Гусаров В.В., Лебедев О.В. Поверхностные явления: учебное пособие. - СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2004 - 28 с.
- Слобняков Н.Ю., Самсонов В.М., Базулев А.Н. и др. О поверхностном натяжении нанокристаллов различной природы // Конденсированные среды и межфазные границы. - 2007. - Том 9, №3. - С. 250-255.
- Рехвиашвили С.Ш., Киштикова Е.В., Кармокова Р.Ю. и др. К расчету постоянной Толмена // Письма в ЖТФ. - 2007. - Том 33, Вып. 2. - С. 1-7.
- Гохштейн А.Я. Поверхностное натяжение твердых тел и адсорбция. - М.: Наука, 1976. - 256 с.
- Юров В.М. и др. Способ измерения поверхностного натяжения твердых тел: Патент РК №57691. - Астана, 2009.
- Юров В.М. и др. Способ измерения поверхностного натяжения и плотности поверхностных состояний диэлектриков: Патент РК №58155. - Астана, 2009.
- Юров В.М. и др. Способ измерения поверхностного натяжения магнитных материалов. Патент РК №58158. - Астана, 2009.
- Ролдугин В.И. Физикохимия поверхности. - Долгопрудный: Издательский Дом «Интеллект», 2008. - 568 с.
- Юров В.М. Поверхностное натяжение твердых тел // Вестник КарГУ, сер. Физика. - 2007. - № 1 (45). - С. 23-29.
- Jurov V.M. Superfecial tension of pure metals // Eurasian Physical Technical journal. - 2011. - Vol. 8, № 1(15). - P. 10-14.
- Оура К., Лифшиц В.Г., Саранин А.А. и др. Введение в физику поверхности. - М.: Наука, 2006. - 490 с.
- Kotlyar V.G., Zotov A.V., Saranin A.A, et al. // Phys. Rev. B. - 2002. - V. 66, №16, - P. 165-169.
- Гиббс Дж.В. Термодинамические работы. - М. Л.: ГИТТЛ, 1950. - 303 с.
- Tolman R.C. The effect of droplet size on surface tension // J. Chem. Phys. - 1949. - Vol. 17, №2. - P. 333-337.
Статья в формате PDF
133 KB...
20 03 2023 10:19:11
Статья в формате PDF
141 KB...
19 03 2023 0:53:44
Статья в формате PDF
263 KB...
18 03 2023 4:41:23
Статья в формате PDF
390 KB...
17 03 2023 15:38:43
Статья в формате PDF
116 KB...
16 03 2023 14:42:44
Статья в формате PDF
317 KB...
14 03 2023 8:24:18
Статья в формате PDF
111 KB...
13 03 2023 10:31:24
Статья в формате PDF
301 KB...
12 03 2023 2:24:16
Статья в формате PDF
118 KB...
11 03 2023 8:53:22
Статья в формате PDF
106 KB...
10 03 2023 12:18:41
Статья в формате PDF
249 KB...
09 03 2023 8:21:13
Статья в формате PDF
322 KB...
08 03 2023 12:33:19
Статья в формате PDF
137 KB...
06 03 2023 23:28:14
Статья в формате PDF
241 KB...
05 03 2023 20:51:31
Изучено состояние иммунной системы у прооперированных больных с узловыми образованиями щитовидной железы. Установлено достоверное снижение абсолютных показателей иммунитета в клеточных и гумopaльных звеньях. В основе механизмов нарушений регуляции иммунного ответа лежат как модуляции свойств отдельных популяций иммуннокомпетентных клеток, так и на молекулярно-генетическом уровне за счет изменения экспрессии генов цитокинов. Выявлена тесная взаимозависимость нейроэндокринной и иммунной систем в реабилитации иммунного гомеостаза в пост операционный период. Для оценки иммунного статуса определялся субпопуляционный состав лимфацитов периферической крови и иммуноглобулины. Исследована клиническая эффективность комплексного применения иммуномодуляторов и тиреоидных препаратов. Обосновано применение в комплексном лечении послеоперационных пациентов с узловым зобом иммунофана, нуклеината натрия в комплексе с гормональными препаратами.
...
04 03 2023 17:20:19
Статья в формате PDF
112 KB...
03 03 2023 21:41:52
В статье описаны эксперименты по изучению влияния основных факторов среды на жизнедеятельность жабронога стрептоцефалюса. Установлено, что наиболее оптимальная температура воды для роста и развития рачка и созревания его яиц составляет 15 - 25°С. Этот вид является исключительно пресноводным и чувствительно реагирует даже на небольшое повышение солености (в пределах 1 - 2%о). Однако жаброног способен выдерживать значительный дефицит кислорода в воде (2,5 - 2 мг/л).
...
02 03 2023 6:53:34
Статья в формате PDF
100 KB...
01 03 2023 7:23:30
Проводился анализ изменений биоэлектрической активности головного мозга и сверхмедленной активности в нервной, дыхательной и сердечно-сосудистой системах в процессе адаптивного биоуправления с биологической обратной связью по параметрам церебральной гемодинамики и медитации. Осуществлялась регистрация сверхмедленной активности нервной и сердечно-сосудистой систем и локализация биоэлектрической активности нервной системы. Выявлено вовлечение различных мозговых структур в реализацию поведенческих стратегий в группах обучившихся различным видам самоуправления, что говорит о различии механизмов достижения конечного результата. Полученные результаты свидетельствуют о вовлечении кардиореспираторной синхронизации в изменение биоэлектрической активности только при релаксации с помощью адаптивного биоуправления. Осуществлена проверка резонансной гипотезы релаксации, согласно которой при совпадении частот изменения дыхания, биоэлектрической активности мозга, сердечного ритма и сосудистого тонуса происходит усиление активности в вовлекаемых в резонансный ответ структурах.
...
28 02 2023 20:16:47
Статья в формате PDF 115 KB...
26 02 2023 8:15:31
Статья в формате PDF 122 KB...
25 02 2023 6:40:43
Статья в формате PDF
355 KB...
24 02 2023 17:58:48
Озонированный (5х10 -7 г/мл) раствор Кребса не влиял на базальный тонус продольных полосок (n=21) трахеи 5 коров, а также на их тонус, вызванный ацетилхолином (10 -6 г/мл), но в 43% опытов достоверно уменьшал релаксирующий эффект адреналина (10 -7 г/мл), т.е. проявлял β-адреноблокирующий эффект. Это свойство озона необходимо учитывать при нормировании условий труда в производствах с повышенным образованием озона и при озонотерапии.
...
22 02 2023 2:25:37
21 02 2023 11:41:54
Статья в формате PDF
103 KB...
20 02 2023 11:14:32
Статья в формате PDF
101 KB...
19 02 2023 22:40:58
Риск развития заболевания может оцениваться по показателям на уровне, хаpaктеризующем хронические пороговые эффекты. Исходя из этих данных, в качестве «индикаторных» состояний выделяется пониженное/повышенное содержание йода в организме обследуемого. В качестве «индикаторных» точек в концепции HEADLAMP для подтверждения заболеваний, хаpaктеризующих эффект недостатка йода в организме, могут выступать изменения в щитовидной железе на субклиническом уровне. Указанные параметры можно оценить на уровне лабораторной базы первичной медико-санитарной помощи при обследованиях населения. Цель HEADLAMP в оценке связи состояния здоровья населения с действием факторов окружающем среды значительно упростить и ускорить обоснованность выбора управленческих решений.
...
18 02 2023 20:41:33
Статья в формате PDF
130 KB...
17 02 2023 10:23:38
Статья в формате PDF
267 KB...
14 02 2023 15:23:19
Статья в формате PDF
267 KB...
12 02 2023 18:59:42
Статья в формате PDF
103 KB...
10 02 2023 8:40:11
09 02 2023 2:41:36
Статья в формате PDF 111 KB...
08 02 2023 13:12:57
Статья в формате PDF
111 KB...
06 02 2023 17:29:31
Статья в формате PDF
104 KB...
04 02 2023 13:37:40
Применение хитинсодержащих препаратов оказывает положительное влияние на мясную продуктивность бычков, а превосходство по хаpaктеристикам химического состава и энергетической ценности мякоти имеют бычки, получавшие сукцинат хитозана.
...
03 02 2023 15:45:36
Статья в формате PDF
691 KB...
02 02 2023 3:54:45
Статья в формате PDF
124 KB...
01 02 2023 13:24:16
Статья в формате PDF
152 KB...
31 01 2023 2:51:19
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::